Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Microbiol Biotechnol ; 27(9): 1593-1601, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28683525

ABSTRACT

Vibrio species are generally recognized as pathogens predominant in seafood along coastal areas. The food industry has sought to develop efficient microbial detection methods. Owing to the limits of conventional methods, this study aimed to establish a rapid identification method for Vibrio isolated from Korea, based on matrix-assisted laser-desorption/ionization timeof- flight mass spectrometry (MALDI-TOF MS). Four different preparation procedures were compared to determine the appropriate means to pretreat Vibrio species, using 17 isolates and five reference strains. Extended direct transfer and full formic acid extraction methods using bacterial colonies on agar plates revealed very low identification rates. Formic acid and trifluoroacetic acid (TFA) extractions using bacterial broth cultures were also performed. All Vibrio isolates and reference strains prepared by TFA extraction were successfully identified to the species level (17/22, 77.3%) and to the genus level (5/22, 22.7%). Thus, TFA extraction was considered the most appropriate method to pretreat Vibrio species for MALDI-TOF MS. The remaining 33 isolates and two reference strains were prepared by TFA extraction and analyzed by MALDI-TOF MS. Overall, 50 isolates were identified to the species level (40/50, 80%) and to the genus level (10/50, 20%). All isolates were identified as 43 V. alginolyticus, six V. parahaemolyticus, and one V. vulnificus species. V. alginolyticus and V. parahaemolyticus were isolated from fish offal (87.5% and 12.5%, respectively), seawater (91.3%, 8.7%), and shellfish (62.5%, 37.5%), whereas V. alginolyticus and V. vulnificus were isolated from sediment (90.9% and 9.1%, respectively). This study established a reliable system of MALDI-TOF MS preparation and analysis for Vibrio identification.


Subject(s)
Molecular Typing/methods , Seawater/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Vibrio/chemistry , Vibrio/classification , Formates , Republic of Korea , Trifluoroacetic Acid
2.
Ann Lab Med ; 37(3): 223-230, 2017 May.
Article in English | MEDLINE | ID: mdl-28224768

ABSTRACT

BACKGROUND: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and accurate identification of clinical yeast isolates. In-tube formic acid/acetonitrile (FA/ACN) extraction is recommended prior to the analysis with MALDI Biotyper, but the direct on-plate FA extraction is simpler. We compared the Biotyper with the VITEK MS for the identification of various clinically relevant yeast species, focusing on the use of the FA extraction method. METHODS: We analyzed 309 clinical isolates of 42 yeast species (four common Candida species, Cryptococcus neoformans, and 37 uncommon yeast species) using the Biotyper and VITEK MS systems. FA extraction was used initially for all isolates. If 'no identification' result was obtained following the initial FA extraction, these samples were then retested by using FA (both systems, additive FA) or FA/ACN (Biotyper only, additive FA/ACN) extraction. These results were compared with those obtained by sequence-based identification. RESULTS: Both systems correctly identified all 158 isolates of the four common Candida species after the initial FA extraction. The Biotyper correctly identified 8.7%, 30.4%, and 100% of 23 C. neoformans isolates after performing initial FA, additive FA, and FA/ACN extractions, respectively, while VITEK MS identified all C. neoformans isolates after the initial FA extraction. Both systems had comparable identification rates of 37 uncommon yeast species (128 isolates), following the initial FA (Biotyper, 74.2%; VITEK MS, 73.4%) or additive FA (Biotyper, 82.0%; VITEK MS, 73.4%). CONCLUSIONS: The identification rate of most common and uncommon yeast isolates is comparable between simple FA extraction/Biotyper method and VITEK MS methods, but FA/ACN extraction is necessary for C. neoformans identification by Biotyper.


Subject(s)
Formates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Yeasts/chemistry , Candida/chemistry , Candida/isolation & purification , Candida/metabolism , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/isolation & purification , Cryptococcus neoformans/metabolism , Solid Phase Extraction , Yeasts/isolation & purification , Yeasts/metabolism
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-57454

ABSTRACT

BACKGROUND: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and accurate identification of clinical yeast isolates. In-tube formic acid/acetonitrile (FA/ACN) extraction is recommended prior to the analysis with MALDI Biotyper, but the direct on-plate FA extraction is simpler. We compared the Biotyper with the VITEK MS for the identification of various clinically relevant yeast species, focusing on the use of the FA extraction method. METHODS: We analyzed 309 clinical isolates of 42 yeast species (four common Candida species, Cryptococcus neoformans, and 37 uncommon yeast species) using the Biotyper and VITEK MS systems. FA extraction was used initially for all isolates. If ‘no identification' result was obtained following the initial FA extraction, these samples were then retested by using FA (both systems, additive FA) or FA/ACN (Biotyper only, additive FA/ACN) extraction. These results were compared with those obtained by sequence-based identification. RESULTS: Both systems correctly identified all 158 isolates of the four common Candida species after the initial FA extraction. The Biotyper correctly identified 8.7%, 30.4%, and 100% of 23 C. neoformans isolates after performing initial FA, additive FA, and FA/ACN extractions, respectively, while VITEK MS identified all C. neoformans isolates after the initial FA extraction. Both systems had comparable identification rates of 37 uncommon yeast species (128 isolates), following the initial FA (Biotyper, 74.2%; VITEK MS, 73.4%) or additive FA (Biotyper, 82.0%; VITEK MS, 73.4%). CONCLUSIONS: The identification rate of most common and uncommon yeast isolates is comparable between simple FA extraction/Biotyper method and VITEK MS methods, but FA/ACN extraction is necessary for C. neoformans identification by Biotyper.


Subject(s)
Candida , Cryptococcus neoformans , Mass Spectrometry , Methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...