Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.368
Filter
1.
Eur J Pharmacol ; : 176768, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002637

ABSTRACT

Previous studies from our laboratory have shown sex differences in the behavioral, molecular, and neurochemical manifestations of morphine withdrawal and they were related to an increased sensitivity to morphine effects in males. In addition, we observed an interaction between the GABAergic and opioid systems that could also be sex-dependent. Baclofen, a GABAB receptor agonist, prevented the somatic expression and the molecular and neurochemical changes induced by morphine withdrawal syndrome in mice. On the contrary, little is known about baclofen effects in the rewarding properties of morphine in male and female mice. The present study aimed to explore the effect of baclofen (1, 2 and 3 mg/kg, i.p.) pretreatment in the rewarding effects induced by morphine (7 mg/kg, s.c.) and its effect on c-Fos and brain-derived neurotrophic factor (BDNF) expression induced by the rewarding properties of morphine in prepubertal male and female mice. Baclofen (2 mg/kg) pretreatment prevented the rewarding effects of morphine only in male mice, while baclofen (3 mg/kg) reduced these effects in both sexes. Moreover, the rewarding effects of morphine were associated with a decrease of BDNF and c-Fos expression cingulate cortex, nucleus accumbens shell, cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) areas of the hippocampus only in male mice. In addition, baclofen pretreatment prevented these changes in BDNF, but not in c-Fos expression. In conclusion, our results show that GABAB receptors have a regulatory role in the rewarding effects of morphine that could be of interest for a potential future therapeutic application in opioid use disorders.

2.
Ecotoxicol Environ Saf ; 281: 116674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964056

ABSTRACT

The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.


Subject(s)
Hippocampus , MAP Kinase Signaling System , Reactive Oxygen Species , Xanthophylls , Animals , Xanthophylls/pharmacology , Mice , Reactive Oxygen Species/metabolism , Hippocampus/drug effects , MAP Kinase Signaling System/drug effects , Male , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Flame Retardants/toxicity , Antioxidants/pharmacology , Phthalic Acids/toxicity , Apoptosis/drug effects , Neurons/drug effects , Maze Learning/drug effects
3.
Neuron ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964330

ABSTRACT

Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.

4.
Foods ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998564

ABSTRACT

Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.

5.
Heliyon ; 10(13): e32146, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027623

ABSTRACT

Aims: Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods: To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings: Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance: Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.

6.
J Orthop Translat ; 47: 50-62, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007035

ABSTRACT

Background: The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA. Materials and methods: We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-ß-gal staining, HE, IHC, von frey test, and hot plate. Results: 1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1ß-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1ß-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice. Conclusion: This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA. The translational potential of this article: The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.

7.
Clin Sci (Lond) ; 138(13): 797-815, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38840498

ABSTRACT

IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.


Subject(s)
Acute Lung Injury , Cell Proliferation , Endothelial Cells , Insulin-Like Growth Factor Binding Proteins , Animals , Humans , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor Binding Proteins/genetics , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Signal Transduction , YAP-Signaling Proteins/metabolism
8.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937715

ABSTRACT

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Subject(s)
Antibiosis , Antifungal Agents , Bacillus , Fusarium , Lipopeptides , Fusarium/drug effects , Fusarium/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Bacillus/metabolism , Antifungal Agents/pharmacology , Peptides, Cyclic/pharmacology , Microbial Interactions , Burkholderiaceae/growth & development , Burkholderiaceae/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Hyphae/drug effects , Hyphae/growth & development
9.
Neurobiol Learn Mem ; : 107952, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906243

ABSTRACT

The ability to learning and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined in male mice whether early life stress (ELS) alters memory and brain activation patterns, by studying the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also disrupted the colocalization of c-Fos+ cells with (training activated) Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. Altered correlated activity during training and changes in IEG expression over time were also found in ELS animals. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of early-life stress on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.

10.
Mol Carcinog ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869281

ABSTRACT

To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.

11.
Biochem Biophys Res Commun ; 726: 150251, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38936249

ABSTRACT

Social behavior, defined as any mode of communication between conspecifics is regulated by a widespread network comprising multiple brain structures. The anterior cingulate cortex (ACC) serves as a hub region interconnected with several brain regions involved in social behavior. Because the ACC coordinates various behaviors, it is important to focus on a subpopulation of neurons that are potentially involved in social behavior to clarify the precise role of the ACC in social behavior. In this study, we aimed to analyze the roles of a social stimulus-responsive subpopulation of neurons in the ACC in social behavior in mice. We demonstrated that a subpopulation of neurons in the ACC was activated by social stimuli and that silencing the social stimulus-responsive subpopulation of neurons in the ACC significantly impaired social interaction without affecting locomotor activity or anxiety-like behavior. Our current findings highlight the importance of the social stimulus-responsive subpopulation of neurons in the ACC for social behavior and the association between ACC dysfunction and impaired social behavior, which sheds light on therapeutic interventions for psychiatric conditions.


Subject(s)
Gyrus Cinguli , Mice, Inbred C57BL , Neurons , Social Behavior , Animals , Gyrus Cinguli/physiology , Neurons/physiology , Neurons/metabolism , Mice , Male , Anxiety/physiopathology , Behavior, Animal/physiology
12.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928250

ABSTRACT

Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.


Subject(s)
Fear , Memory , Proto-Oncogene Proteins c-fos , Stress Disorders, Post-Traumatic , Animals , Male , Mice , Brain/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Stress Disorders, Post-Traumatic/metabolism
13.
Sleep Breath ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836924

ABSTRACT

PURPOSE: Hypoxia and sleep fragmentations that develop during sleep cause central nervous system damage in patients with obstructive sleep apnea (OSA). This study investigates the relationship between OSA severity and glial fibrillary acidic protein (GFAP) and c-Fos, which are considered indicators of neuronal damage. METHODS: The study included 84 participants (70 patients with OSA and 14 healthy individuals). All participants were evaluated with the Epworth Sleepiness Scale (ESS) before polysomnography (PSG), and serum GFAP and c-Fos values were measured after PSG. All participants were grouped according to the apnea-hypopnea index (AHI) score (control: AHI < 5, Mild OSA: 5 ≤ AHI < 15; moderate OSA: 15 ≤ AHI < 30; severe OSA: AHI ≥ 30). RESULTS: The average age of the participants was 48.5 ± 11.4 years. According to AHI scoring, 14 healthy individuals (16.7%) were in the control group, and 70 patients (83.3%) were in OSA groups. The serum GFAP levels and c-Fos levels were increased in the OSA groups (7.1 ± 5.7 ng/mL and 7.9 ± 7.5 pg/mL respectively) compared to the control group (1.3 ± 0.4 ng/mL and 2.7 ± 1.4 pg/mL p < 0.001 and p < 0.01, respectively). There was a significant positive correlation between AHI and oxygen desaturation index (ODI) values, which indicate disease severity, and serum c-Fos (r: 0.381 and r:0.931, p < 0.01, respectively) and GFAP (r: 0.793 and r:0.745, p < 0.01, respectively) values. CONCLUSION: Serum GFAP and c-Fos values, which are considered indicators of neuronal damage, can be used as a serum marker to determine disease severity in OSA.

14.
Auris Nasus Larynx ; 51(4): 733-737, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838426

ABSTRACT

OBJECTIVE: In Japan, intravenous injection of a 7 % solution of sodium bicarbonate (NaHCO3) had been originally developed to inhibit motion sickness and then have long been used to treat vertigo. Previously, we reported that Fos-positive neurons appear in the amygdala after hypergravity stimulation in rats. In the present study, we examined whether injection of 7 % NaHCO3 inhibits hypergravity-induced Fos expression in the neurons in the central nucleus of the amygdala in rats. METHODS: Rats were exposed to 2 G hypergravity in an animal centrifuge device for 3 h. A solution of 7 % NaHCO3 at a dose of 4 mM/kg was injected intraperitoneally before 2 G hypergraviy. Fos-positive neurons in the amygdala were stained immunohistochemically. RESULTS: The number of Fos-positive neurons in the central nucleus of the amygdala was significantly increased after 2 G hypergravity in rats that received no drugs or saline, compared to that in rats exposed only to the noise of the centrifuge and received 7 % NaHCO3 solution. The number of Fos-positive neurons in the central nucleus of the amygdala after 2 G hypergravity was significantly decreased in rats that received 7 % NaHCO3 solution, compared to that in rats that received no drugs or saline. CONCLUSION: Since Fos expression is a marker of activated neurons, the present findings suggest that hypergravity activates the amygdala and that administration of 7 % NaHCO3 suppresses hypergravity-induced activation of the amygdala. Hypergravity disturbs spatial orientation to produce motion sickness and the amygdala is involved in fear response. Recently, Ziemann et al. suggested that fear-evoking stimuli reduce the pH in the amygdala to activate it, leading to induction of fear behavior and that administering HCO3- attenuates fear behavior [Cell 2009; 139: 1012-1021]. Therefore, it is possible that hypergravity reduces the pH in the amygdala to activate it, thereby inducing the fear associated with motion sickness and that administration of 7 % NaHCO3 increases the brain pH thereby suppressing hypergravity-induced activation of the amygdala and inhibiting the fear associated with motion sickness. In patients with vertigo, 7 % NaHCO3 therapy may increase the brain pH thereby suppressing the activation of the amygdala and inhibiting the fear associated with vertigo to elicit a beneficial clinical effect.

15.
Neurochem Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896196

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.

16.
Poult Sci ; 103(9): 103957, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38936073

ABSTRACT

A total of 378 Cobb-500 male broilers were used to evaluate the effects of 2 fiber sources, differing in hydration capacity and fermentability, on gastrointestinal tract development, apparent ileal digestibility and performance from 1 to 42d of age. There were 9 replicates per each of the 3 dietary treatments, all in mash form: a wheat-soybean control (CON) diet, CON diet diluted with 1.5% of wood lignocellulose (LC diet) as a non-fermentable insoluble fiber with high hydration capacity; and CON diluted with 1.5% of a mixture of fibers (ISFC diet) containing both lignified insoluble fiber and a prebiotic soluble fiber fraction from fructooligosaccharides. Additionally, the fermentability of both fiber sources (LC and ISFC) was determined by in vitro using cecal inoculum from broilers fed the experimental diets. Both LC and ISFC treatments impaired by 4% feed conversion ratio only during the first 7d (P = 0.003) compared with CON group. In the grower period (21-42d), the ISFC group showed the best growth (P = 0.039), and at 42d tended to show the highest body weight (P = 0.095). This agrees well with the highest ileal dry matter (P = 0.033) and organic matter (P = 0.043) digestibility observed in ISFC group and the similar trend observed for ileal protein digestibility (P = 0.099) at 42d. Also, at 42 d, absolute and relative (% body weight) digestive tract weights (P ≤ 0.041) and empty gizzard weights (P ≤ 0.034) were greater for LC and ISFC groups compared to CON. The cecal molar proportion of valeratewas greatest in ISFC group (P = 0.039). In vitro gas production was higher for ISFC than for LC substrate when using either a diet-adapted or non-adapted cecal inoculum (P < 0.05). These results show the interest in combining IF with prebiotic highly fermentable fiber, such as fructooligosaccharides, in broilers to improve nutrient digestibility and finishing performance.

17.
Chemosphere ; 359: 142299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761826

ABSTRACT

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Subject(s)
Chondrogenesis , Larva , Mustard Gas , Proto-Oncogene Proteins c-fos , Transcription Factor AP-1 , Zebrafish , Animals , Mustard Gas/toxicity , Larva/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Chondrogenesis/drug effects , Transcription Factor AP-1/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
18.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780087

ABSTRACT

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Subject(s)
Dentate Gyrus , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Sucrose , Animals , Male , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Discrimination Learning/drug effects , Discrimination Learning/physiology , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Excitatory Amino Acid Antagonists/pharmacology , Memory/physiology , Memory/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Receptors, AMPA/metabolism , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , RNA, Messenger/metabolism , Self Administration , Sucrose/administration & dosage
19.
Article in English | MEDLINE | ID: mdl-38822097

ABSTRACT

RATIONALE: Alcohol can disrupt conditioned sexual inhibition (CSI) established by first-order conditioning in male rats. CSI can also be induced using second-order conditioning, during which male rats are trained to associate a neutral odor with a nonreceptive female. As a result, when given access to two receptive females (one scented and one unscented) during a copulatory preference test, they display CSI toward the scented female. OBJECTIVE: The present study examined the effect of low-to-moderate doses of alcohol on CSI and brain activation following exposure to alcohol and the olfactory cue alone. METHODS: Sexually-naïve Long-Evans rats received alternate conditioning sessions with unscented receptive or scented (almond extract) non-receptive females. Following the conditioning phase, males were injected with saline, alcohol 0.5 g/kg or 1 g/kg, 45 min before a copulatory test with two receptive females, with one bearing the olfactory cue. Fos activation was later assessed, following exposure to alcohol and the olfactory cue alone, in several brain regions involved in the expression and regulation of male sexual behavior. RESULTS: While males in the saline group displayed sexual avoidance towards the scented female, those injected with alcohol before the copulatory test, regardless of the dose, copulated indiscriminately with both females. Subsequent exposure to alcohol and the olfactory cue alone induced different Fos expression between groups in several brain regions. CONCLUSIONS: Low to moderate doses of alcohol disrupt conditioned sexual inhibition in male rats and induce a differential pattern of neural activation, particularly in regions involved in the expression and regulation of sexual behavior.

20.
Front Nutr ; 11: 1356189, 2024.
Article in English | MEDLINE | ID: mdl-38765817

ABSTRACT

Introduction: Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods: Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results: The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion: MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...