Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514546

ABSTRACT

Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 µm height and 600 µm width in 5 mm thick PDMS were fabricated on 2" and 4" demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices.

2.
Environ Pollut ; 226: 12-20, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28399502

ABSTRACT

Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 µM), but attenuated at lower concentration (0.391 µM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments.


Subject(s)
Carbamazepine/toxicity , Chlorophyta/drug effects , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyta/physiology , Fourier Analysis , Spectroscopy, Fourier Transform Infrared , Synchrotrons
3.
Acta Pharmaceutica Sinica ; (12): 985-2016.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-779267

ABSTRACT

Ibuprofen lipid pellets prepared by melting method could mask the bitter taste of the drug to some extent. The pellets were further coated with chitosan (cationic) and gelatin (anionic) by ionic interaction layerby- layer self-assembly (LBL) coating to improve masking effects. In this paper, the release percentage of drugs in short time (1 min) was utilized as an indicator for the taste-masking, and it had confirmed the LBL coating inhibited the release of model drug of ibuprofen. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR) has been applied to investigate the material distributions on the cross section of pellets and film. Characteristic absorptions of the compositions were obtained by SR-FTIR single spectrum scanning. The distributions of the drug and materials in coated films were determined by SR-FTIR mapping. The FTIR absorptions of chitosan and gelatin on the surface of lipid pellets was examined to verify the existence of chitosan and gelatin on the surface and a film formed using SR-FTIR ratio analysis. Whilst pellets coated only by chitosan or gelatin did not show the typical absorption of chitosan or gelatin, which confirmed the effects of ionic interaction on the film forming process. In conclusion, the method of SR-FTIR established for the study of the existence and distribution of materials in coated film offers a new choice for researches on membranes/films in drug delivery systems and pharmaceutical preparations.

4.
Acta Pharm Sin B ; 5(3): 270-6, 2015 May.
Article in English | MEDLINE | ID: mdl-26579456

ABSTRACT

The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres.

5.
Acta Pharmaceutica Sinica B ; (6): 270-276, 2015.
Article in English | WPRIM (Western Pacific) | ID: wpr-310026

ABSTRACT

The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres.

SELECTION OF CITATIONS
SEARCH DETAIL
...