Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
2.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422654

ABSTRACT

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Subject(s)
Asthma , Dictamnus , Hepatocyte Nuclear Factor 3-beta , STAT3 Transcription Factor , Mice , Humans , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Ovalbumin , Disease Models, Animal , Asthma/chemically induced , Asthma/drug therapy , Lung , Inflammation/metabolism , Mucus/metabolism , Bronchoalveolar Lavage Fluid , Mice, Inbred BALB C , Cytokines/metabolism , STAT6 Transcription Factor/metabolism
3.
Microb Pathog ; 188: 106570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341108

ABSTRACT

High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.


Subject(s)
Hydrogen Peroxide , Mitochondrial Diseases , Animals , Female , Cattle , Caspase 3/metabolism , Hydrogen Peroxide/metabolism , bcl-2-Associated X Protein/metabolism , Diet/veterinary , Liver/metabolism , Lactation , Oxidative Stress , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism , Unfolded Protein Response , Mitochondrial Diseases/metabolism , Forkhead Transcription Factors/metabolism , Milk/metabolism , Hydrogen-Ion Concentration , Animal Feed
4.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252148

ABSTRACT

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Subject(s)
Hepatocyte Nuclear Factor 3-beta , Inhibin-beta Subunits , Methylmalonic Acid , Pancreatic Neoplasms , Humans , Hepatocyte Nuclear Factor 3-beta/genetics , Inhibin-beta Subunits/genetics , Pancreas , Pancreatic Neoplasms/genetics , Transcriptional Activation
5.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072043

ABSTRACT

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Renal Cell , Hepatocyte Nuclear Factor 3-beta , Kidney Neoplasms , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Transcription Factors/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Disease Progression
6.
Cell Mol Gastroenterol Hepatol ; 17(2): 237-249, 2024.
Article in English | MEDLINE | ID: mdl-37879405

ABSTRACT

BACKGROUND & AIMS: Transcription factors regulate gene expression that orchestrates liver physiology. Many bind at distal enhancers and chromatin looping is required to activate their targets. Chromatin architecture has been linked to essential functions of the liver, including metabolism and sexually dimorphic gene expression. We have previously shown that pioneer factor Foxa2 opens chromatin for binding of nuclear receptors farnesoid X receptor (FXR) and liver X receptor-α during acute ligand activation. FXR is activated by bile acids and deletion of Foxa2 in the liver results in intrahepatic cholestasis. We hypothesized that Foxa2 also enables chromatin conformational changes during ligand activation and performed genome-wide studies to test this hypothesis. METHODS: We performed Foxa2 HiChIP (Hi-C and ChIP) to assess Foxa2-dependent long-range interactions in mouse livers treated with either vehicle control or FXR agonist GW4064. RESULTS: HiChIP contact analysis shows that global chromatin interactions are dramatically increased during FXR activation. Ligand-treated livers exhibit extensive redistribution of topological associated domains and substantial increase in Foxa2-anchored loops, suggesting Foxa2 is involved in dynamic chromatin conformational changes. We demonstrate that chromatin conformation, including genome-wide interactions, topological associated domains, and intrachromosomal and interchromosomal Foxa2-anchored loops, drastically changes on addition of FXR agonist. Additional Foxa2 binding in ligand-activated state leads to formation of Foxa2-anchored loops, leading to distal interactions and activation of gene expression of FXR targets. CONCLUSIONS: Ligand activation of FXR, and likely of related receptors, requires global changes in chromatin architecture. We determine a novel role for Foxa2 in enabling these conformational changes, extending its function in bile acid metabolism.


Subject(s)
Bile Acids and Salts , Chromatin , Mice , Animals , Chromatin/metabolism , Bile Acids and Salts/metabolism , Ligands , Transcription Factors/metabolism , Liver/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
7.
Environ Toxicol ; 39(2): 708-722, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37665156

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS: FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS: FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION: FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.


Subject(s)
Gallbladder Neoplasms , Animals , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
8.
Biochim Biophys Acta Gen Subj ; 1868(1): 130500, 2024 01.
Article in English | MEDLINE | ID: mdl-37914145

ABSTRACT

BACKGROUND: Excessive inflammation is the main cause of treatment failure in neonatal pneumonia (NP). CCCTC-binding factor (CTCF) represents an important node in various inflammatory diseases. In the present study, we tried to clarify the function and underlying molecular mechanism of CTCF on an in vitro cellular model of NP, which was generated by simulating the human lung fibroblast cell line WI-38 with lipopolysaccharide (LPS). METHODS: The SUMOylation level and protein interaction were verified by Co-immunoprecipitation assay. Cell viability was measured by Cell Counting Kit-8 assay. Inflammatory factors were examined by Enzyme-linked immunosorbent assay. Cell apoptosis was evaluated by TUNEL assay. The binding activity of CTCF to target promoter was tested by chromatin immunoprecipitation and luciferase reporter assay. RESULTS: LPS treatment restrained cell viability, promoted the production of inflammatory factors, and enhanced cell apoptosis. CTCF overexpression played anti-inflammatory and anti-apoptotic roles. Furthermore, CTCF was modified by SUMOylation with small ubiquitin-like modifier protein 1 (SUMO1). Interfering with sumo-specific protease 1 (SENP1) facilitated CTCF SUMOylation and protein stability, thus suppressing LPS-evoked inflammatory and apoptotic injuries. Moreover, CTCF could bind to the forkhead box protein A2 (FOXA2) promoter region to promote FOXA2 expression. The anti-inflammatory and anti-apoptotic roles of CTCF are associated with FOXA2 activation. In addition, SENP1 knockdown increased FOXA2 expression by enhancing the abundance and binding ability of CTCF. CONCLUSIONS: SUMOylation of CTCF by SENP1 knockdown enhanced its protein stability and binding ability and it further alleviated LPS-evoked inflammatory injury in human lung fibroblasts by positively regulating FOXA2 transcription.


Subject(s)
Lipopolysaccharides , Peptide Hydrolases , Infant, Newborn , Humans , Peptide Hydrolases/metabolism , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Sumoylation , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Fibroblasts/metabolism , Lung/metabolism , Anti-Inflammatory Agents , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
9.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119655, 2024 02.
Article in English | MEDLINE | ID: mdl-38135007

ABSTRACT

Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic ß-cells and is involved in ß-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in ß-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.


Subject(s)
Diabetes Mellitus , Insulin , Mice , Rats , Animals , Insulin/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
10.
Virchows Arch ; 484(4): 709-713, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38141134

ABSTRACT

In the post-chemotherapy setting, germ cell tumors of the testis (GCTT) that resemble non-specific sarcomas and co-express cytokeratins and glypican-3 (GPC3) are diagnosed as "sarcomatoid yolk sac tumor postpubertal-type (YSTpt)". The diagnosis of sarcomatoid YSTpt is clinically relevant but challenging due to its rarity, non-specific histology, and negative α-fetoprotein (AFP) staining. Recently, FOXA2 has emerged as a key-gene in the reprogramming of GCTT (activating the transcription of several genes, among which GATA3), and immunohistochemical studies showed that GATA3 and FOXA2 have a higher sensitivity for non-sarcomatoid YSTpt than GPC3 and AFP. We found that sarcomatoid YSTpt did not express FOXA2 [0: 14/14 (100%)] and showed focal expression of GATA3 [0: 12/14 (85.7%), 1 + : 2/14 (14.3%)], thus suggesting that these markers are not useful in diagnosing this tumor. Furthermore, we proposed a potential mechanism of sarcomatoid transformation in the post-chemotherapy setting of GCTT, mediated by the downregulation of FOXA2 and GATA3.


Subject(s)
Biomarkers, Tumor , Down-Regulation , Endodermal Sinus Tumor , GATA3 Transcription Factor , Hepatocyte Nuclear Factor 3-beta , Phenotype , Testicular Neoplasms , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Humans , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Male , Testicular Neoplasms/pathology , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Endodermal Sinus Tumor/pathology , Endodermal Sinus Tumor/genetics , Endodermal Sinus Tumor/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Immunohistochemistry , Glypicans/genetics , Glypicans/metabolism , Adult , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms, Germ Cell and Embryonal/pathology , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Young Adult , Adolescent
11.
Adv Sci (Weinh) ; 10(35): e2304521, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875418

ABSTRACT

The forkhead box transcription factor A2 (FOXA2) is a transcription factor and plays a key role in embryonic development, metabolism homeostasis and tumor cell proliferation; however, its regulatory potential in CRC is not fully understood. Here, it is found that FOXA2 expression is markedly up-regulated in tumor samples of CRC patients as compared with the normal tissues, which is closely associated with the worse survival in patients with CRC. Notably, a positive correlation between FOXA2 and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) gene expression is observed in CRC patients. Mechanistically, FOXA2 depletion weakens the activation of Nrf2 pathway and decreases GPX4 level in CRC cells, thereby leading to ferroptosis, which is further supported by bioinformatic analysis. More intriguingly, the E3 ubiquitin ligase tripartite motif containing 36 (TRIM36) is identified as a key suppressor of FOXA2, and it is observed that TRIM36 can directly interact with FOXA2 and induce its K48-linked polyubiquitination, resulting in FOXA2 protein degradation in vitro. Taken together, all the studies demonstrate that FOXA2 mediated by TRIM36 promotes CRC progression by inhibiting the Nrf2/GPX4 ferroptosis signaling pathway, thus providing a new therapeutic target for CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Female , Pregnancy , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase , NF-E2-Related Factor 2/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Hepatocyte Nuclear Factor 3-beta/genetics
12.
Adv Sci (Weinh) ; 10(32): e2303884, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37679064

ABSTRACT

Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.


Subject(s)
Pluripotent Stem Cells , Serotonin , Humans , Mice , Animals , Serotonin/metabolism , Hedgehog Proteins/metabolism , Neurons/metabolism , Cell Differentiation/physiology , Pluripotent Stem Cells/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
13.
BMC Cancer ; 23(1): 906, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752418

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), the most common primary liver cancer, prevails mainly in males and has long been attributed to androgens and higher circumstantial levels of interleukin-6 (IL-6) produced by resident hepatic macrophages. METHODS: Constitutively hepatocyte-specific histone deacetylase 3 (HDAC3)-deficient (HDAC3LCKO) mice and constitutively hepatocyte-specific HDAC3 knockout and systemic IL-6 simultaneously ablated (HDAC3LCKO& IL-6-/-) mice were used in our study to explore the causes of sex differences in HCC. Additionally, we performed human HCC tissues with an IHC score. Correlation analysis and linear regression plots were constructed to reveal the association between HDAC3 and its candidate genes. To further elucidate that HDAC3 controls the expression of Foxa1/2, we knocked down HDAC3 in HUH7 liver cancer cells. RESULTS: We observed a contrary sex disparity, with an earlier onset and higher incidence of HCC in female mice when HDAC3 was selectively ablated in the liver. Loss of HDAC3 led to constant liver injury and the spontaneous development of HCC. Unlike the significant elevation of IL-6 in male mice at a very early age, female mice exhibit stable IL-6 levels, and IL-6 ablation did not eliminate the sex disparity in hepatocarcinogenesis in HDAC3-deficient mice. Oestrogen often protects the liver when combined with oestrogen receptor alpha (ERα); however, ovariectomy in HDAC3-ablated female mice significantly delayed tumourigenesis. The oestrogen-ERα axis can also play a role in tumour promotion in the absence of Foxa1 and Foxa2 in the receptor complex. Loss of HDAC3 profoundly reduced the expression of both Foxa1 and Foxa2 and impaired the binding between Foxa1/2 and ERα. Furthermore, a more frequent HDAC3 decrease accompanied by the simultaneous Foxa1/2 decline was found in female HCC compared to that in male HCC. CONCLUSION: In summary, we reported that loss of HDAC3 reduces Foxa1/2 and thus promotes HCC development in females in an oestrogen-dependent manner.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Female , Male , Mice , Humans , Animals , Carcinoma, Hepatocellular/genetics , Estrogen Receptor alpha/genetics , Interleukin-6/genetics , Liver Neoplasms/genetics , Hepatocytes , Receptors, Estrogen , Carcinogenesis , Cell Transformation, Neoplastic , Estrogens
14.
Cell Rep ; 42(8): 112939, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37566546

ABSTRACT

Mammalian sirtuin 6 (SIRT6) regulates a spectrum of vital biological processes and has long been implicated in the progression of cancer. However, the mechanisms underlying the regulation of SIRT6 in tumorigenesis remain elusive. Here, we report that the tumor-suppressive function of SIRT6 in non-small cell lung cancer (NSCLC) is regulated by acetylation. Specifically, males absent on the first (MOF) acetylates SIRT6 at K128, K160, and K267, resulting in a decreased deacetylase activity of SIRT6 and attenuated SIRT6 tumor-suppressive function in NSCLC. Mechanistically, MOF-mediated SIRT6 acetylation hinders the interaction between SIRT6 and transcriptional factor FOXA2, which in turn leads to the transcriptional activation of ZEB2, thus promoting NSCLC progression. Collectively, these data indicate an acetylation-dependent mechanism that modulates SIRT6 tumor-suppressive function in NSCLC. Our findings suggest that the MOF-SIRT6-ZEB2 axis may represent a promising therapeutic target for the management of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Sirtuins , Humans , Male , Acetylation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Gene Expression Regulation , Hepatocyte Nuclear Factor 3-beta , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Sirtuins/genetics , Sirtuins/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics
15.
Mol Metab ; 75: 101769, 2023 09.
Article in English | MEDLINE | ID: mdl-37423392

ABSTRACT

OBJECTIVE: The essential role of raptor/mTORC1 signaling in ß-cell survival and insulin processing has been recently demonstrated using raptor knock-out models. Our aim was to evaluate the role of mTORC1 function in adaptation of ß-cells to insulin resistant state. METHOD: Here, we use mice with heterozygous deletion of raptor in ß-cells (ßraHet) to assess whether reduced mTORC1 function is critical for ß-cell function in normal conditions or during ß-cell adaptation to high-fat diet (HFD). RESULTS: Deletion of a raptor allele in ß-cells showed no differences at the metabolic level, islets morphology, or ß-cell function in mice fed regular chow. Surprisingly, deletion of only one allele of raptor increases apoptosis without altering proliferation rate and is sufficient to impair insulin secretion when fed a HFD. This is accompanied by reduced levels of critical ß-cell genes like Ins1, MafA, Ucn3, Glut2, Glp1r, and specially PDX1 suggesting an improper ß-cell adaptation to HFD. CONCLUSION: This study identifies that raptor levels play a key role in maintaining PDX1 levels and ß-cell function during the adaptation of ß-cell to HFD. Finally, we identified that Raptor levels regulate PDX1 levels and ß-cell function during ß-cell adaptation to HFD by reduction of the mTORC1-mediated negative feedback and activation of the AKT/FOXA2/PDX1 axis. We suggest that Raptor levels are critical to maintaining PDX1 levels and ß-cell function in conditions of insulin resistance in male mice.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Mice , Animals , Male , Diet, High-Fat/adverse effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
16.
Cell Rep ; 42(7): 112751, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37405921

ABSTRACT

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Fumarate Hydratase/genetics , Antioxidants , NF-E2-Related Factor 2/genetics , Leiomyomatosis/genetics , Uterine Neoplasms/genetics , Skin Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , Chromatin , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Hepatocyte Nuclear Factor 3-beta/genetics
17.
Dev Biol ; 502: 20-37, 2023 10.
Article in English | MEDLINE | ID: mdl-37423592

ABSTRACT

The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.


Subject(s)
Endoderm , Gene Regulatory Networks , N-Myc Proto-Oncogene Protein/genetics , Cell Differentiation/genetics , Transcription Factors/genetics , Gene Expression Regulation, Developmental/genetics
18.
Histopathology ; 83(3): 465-476, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37317674

ABSTRACT

AIMS: Yolk sac tumour postpubertal-type (YSTpt) shows a wide range of histological patterns and is challenging to diagnose. Recently, forkhead box transcription factor A2 (FoxA2) emerged as a driver of YSTpt formation and a promising marker for diagnosing YSTpt. However, FoxA2 has not been tested in the different patterns of YSTpt. This study aimed to assess the staining pattern of FoxA2 in te different patterns of YSTpt and other germ cell tumours of the testis (GCTT), comparing it with glypican-3 (GPC3) and α-fetoprotein (AFP). METHODS AND RESULTS: FOXA2, GPC3 and AFP immunohistochemistry was performed on 24 YSTpt (24 microcystic/reticular, 10 myxoid, two macrocystic, five glandular/alveolar, two endodermal sinus/perivascular, four solid, two polyembryoma/embryoid body and two polyvesicular vitelline) and 81 other GCTT. The percentage of positive cells (0, 1+, 2+, 3+) and the intensity (0, 1, 2, 3) were evaluated regardless of and within each YSTpt pattern. FoxA2 was positive in all YSTpt (24 of 24) and all but one (23 of 24) exhibited 2+/3+ stain, with higher intensity [median value (mv): 2.6] than AFP (1.8) and GPC3 (2.5). Both FoxA2 and GPC3 were positive in all microcystic/reticular (24 of 24), myxoid (10 of 10), macrocystic (two of two), endodermal sinus/perivascular (four of four) and polyembryoma/embryoid body (two of two) patterns. Nevertheless, only FoxA2 was positive in all glandular/alveolar (five of five), solid (four of four) and polyvesicular vitelline (two of two) patterns. The intensity of FoxA2 was higher than AFP and GPC3 in almost all YST patterns. In the other GCTT, FoxA2 was positive only in teratoma postpubertal-type (Tpt) [13 of 20 (65%)], with staining almost exclusively confined to the mature gastrointestinal/respiratory tract epithelium. CONCLUSIONS: FoxA2 is a highly sensitive and specific biomarker that supports the diagnosis of YSTpt. FoxA2 is superior to GPC3 and AFP, especially in rare and difficult-to-diagnose histological patterns of YSTpt, but mature glands of Tpt could represent a potential diagnostic pitfall.


Subject(s)
Cysts , Endodermal Sinus Tumor , Ovarian Neoplasms , Testicular Neoplasms , Male , Humans , Female , alpha-Fetoproteins , Biomarkers, Tumor , Endodermal Sinus Tumor/diagnosis , Endodermal Sinus Tumor/pathology , Testicular Neoplasms/pathology , Ovarian Neoplasms/pathology , Glypicans
19.
Histopathology ; 83(3): 477-481, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37265221

ABSTRACT

AIMS: Testicular germ cell tumours are the most common solid malignancies in young men of age 14-44 years. It is generally accepted that both seminomas and non-seminomas arise from a common precursor, the germ cell neoplasia in-situ, which itself is the result of a defective (primordial) germ cell development. The stem cell-like population of the non-seminomas, the embryonal carcinoma, is capable of the differentiation of all three germ layers (teratomas) and extra-embryonic tissues (yolk-sac tumours, choriocarcioma) into cells. In contrast, seminomas are thought to have a limited differentiation potential. Nevertheless, several studies have highlighted their ability to undergo reprogramming to an embryonal carcinoma or differentiation into other non-seminomatous entities. Here, we demonstrate that in approximately 5% of seminomas, the yolk-sac tumour driver gene FOXA2 is detectable at the protein level, indicative of an occult yolk-sac tumour subpopulation that putatively arose from seminoma cells, as the presence of other GCT entities could be excluded. The presence of these subpopulations might render the tumour more aggressive and argue for an adjustment of the therapeutic concept. We used our data to update the model of germ cell tumour pathogenesis, especially regarding the developmental potential of seminomas. Additionally, we suggest to include detection of FOXA2 into standard routine diagnosis of seminomas.


Subject(s)
Carcinoma, Embryonal , Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Male , Humans , Adolescent , Young Adult , Adult , Seminoma/pathology , Testicular Neoplasms/pathology , Cell Differentiation , Hepatocyte Nuclear Factor 3-beta/genetics
20.
Iran J Public Health ; 52(2): 306-314, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37089159

ABSTRACT

Background: Colorectal cancer is the third most common malignant tumor in the world and substantial death cases are reported each year. We aimed to explore the molecular mechanism underlying colorectal cancer tumor-igenesis and progression. Methods: The expression levels of Forkhead box A2 (FOXA2) in colorectal cancer tissues were first analyzed using Gene Expression Profiling Interactive Analysis (GEPIA). More multiple in vitro experiments established the role of FOXA2 in colorectal cancer progression. The potential downstream target of FOXA2 was identified by Western blot analysis. Results: FOXA2 expression level was significantly up-modulated in colorectal cancer specimens and cells (P<0.05). Silencing FOXA2 remarkably inhibited colorectal cancer cells growth, invasion and migration. BCL2-associated X (BAX) protein was identified as a potential downstream protein of FOXA2. Conclusion: Our findings demonstrated the essential role of FOXA2 in colorectal cancer progression and identified BAX protein as its potential target.

SELECTION OF CITATIONS
SEARCH DETAIL
...