Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Gels ; 10(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786216

ABSTRACT

Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The objective of this work was to evaluate the effect of the variation in the content of agavins and AS on the physical, structural, and viability properties of Saccharomyces boulardii encapsulates incorporated into gelatin gummies. An RSM was used to obtain an optimized formulation of gelatin gummies. The properties of the gel in the gummy were characterized by a texture profile analysis and Aw. The humidity and sugar content were determined. A sucrose gummy was used as a control for the variable ranges. Alginate microcapsules containing S. boulardii were added to the optimized gummy formulation to obtain a synbiotic gummy. The viability of S. boulardii and changes in the structure of the alginate gel of the microcapsules in the synbiotic gummy were evaluated for 24 days by image digital analysis (IDA). The agavins and agave syrup significantly affected the texture properties (<1 N) and the Aw (>0.85). The IDA showed a change in the gel network and an increase in viability by confocal microscopy from day 18. The number of pores in the gel increased, but their size decreased with an increase in the number of S. boulardii cells. Agavins and cells alter the structure of capsules in gummies without affecting their viability.

2.
ACS Appl Mater Interfaces ; 16(17): 21509-21521, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38642038

ABSTRACT

In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.


Subject(s)
Doxorubicin , Fructans , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Animals , Fructans/chemistry , Fructans/pharmacology , Mice , Cell Line, Tumor , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Ultrasonic Waves , Mice, Nude , Female , Cell Survival/drug effects , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Neoplasms/pathology , Silicon Dioxide/chemistry , Xenograft Model Antitumor Assays
3.
Food Res Int ; 184: 114276, 2024 May.
Article in English | MEDLINE | ID: mdl-38609208

ABSTRACT

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Subject(s)
Biological Products , Cynara scolymus , Garlic , Helianthus , Inulin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antioxidants , Magnetic Resonance Spectroscopy , Lasers
4.
Rev Argent Microbiol ; 2024 Apr 03.
Article in Spanish | MEDLINE | ID: mdl-38575495

ABSTRACT

In recent years the relationship between the intestinal microbiota, the host and chronic non-communicable diseases has brought interest into the study of its formation and maintenance in the host. Lactic acid bacteria (BAL) are Gram-positive bacteria with probiotic activity, which have been associated with many health benefits, such as decreased body fat mass and lower risk of type II diabetes mellitus. One of the main colonization mechanisms and bacteria survival strategies is the production of biofilms and the use of prebiotics as substrates to achieve a balance within intestinal microbiota. However, there is not enough evidence to demonstrate the biofilm formation in the presence of agave fructans (AF). This study aimed to evaluate in vitro the biofilm formation in a consortium of lactic acid bacteria: Lactobacillus delbrueckii ssp. lactis, Lactobacillus delbrueckii ssp. bulgaricus y Streptococcus thermophilus in the presence of AF at different concentrations: 0%, 0,1%, 4%, 8% y 16%. The addition of 0,1% of AF correlates with the best capacity for biofilm formation. The findings imply the possibility of modulating the biofilm formation of lactic acid bacteria with AF. These results can contribute positively to the host, by generating intestinal homeostasis, colonization resistance, stability to food digestion and chemical modifications of drugs and carry out beneficial functions to the health.

5.
J Agric Food Chem ; 72(14): 7818-7831, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38466922

ABSTRACT

This study aimed to compare the structural features and functional properties of polysaccharides from single-clove garlic (SGPs) and multiclove garlic (MGPs) and to establish their structure-function relationships. Both SGPs and MGPs were identified as fructans consisting mainly of →1)-ß-d-Fruf (2→ and →6)-ß-d-Fruf (2→ residues but differed in average molecular weights (6.76 and 5.40 kDa, respectively). They shared similar thermodynamic properties, X-ray diffraction patterns, and high gastrointestinal digestive stability. These two purified fructans could dose-dependently scavenge free radicals, reduce oxidized metals, and effectively alleviate metronidazole-induced oxidative stress and CuSO4-induced inflammation in zebrafish via inhibiting the overexpression of inflammation-related proteins and cytokines. SGPs showed lower free radical scavenging activity in vitro than MGPs but higher antioxidant and anti-inflammatory activities in vivo. Taken together, the molecular weight was the main structural difference between the two garlic fructans of different varieties, which is a potential reason for their differences in biological activities.


Subject(s)
Garlic , Syzygium , Animals , Fructans/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Garlic/chemistry , Zebrafish/metabolism , Inflammation
6.
Am J Clin Nutr ; 119(2): 496-510, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309832

ABSTRACT

BACKGROUND: Inulin-type fructans (ITF) are the leading prebiotics in the market. Available evidence provides conflicting results regarding the beneficial effects of ITF on cardiovascular disease risk factors. OBJECTIVES: This study aimed to evaluate the effects of ITF supplementation on cardiovascular disease risk factors in adults. METHODS: We searched MEDLINE, EMBASE, Emcare, AMED, CINAHL, and the Cochrane Library databases from inception through May 15, 2022. Eligible randomized controlled trials (RCTs) administered ITF or placebo (for example, control, foods, diets) to adults for ≥2 weeks and reported one or more of the following: low, very-low, or high-density lipoprotein cholesterol (LDL-C, VLDL-C, HDL-C); total cholesterol; apolipoprotein A1 or B; triglycerides; fasting blood glucose; body mass index; body weight; waist circumference; waist-to-hip ratio; systolic or diastolic blood pressure; or hemoglobin A1c. Two reviewers independently and in duplicate screened studies, extracted data, and assessed risk of bias. We pooled data using random-effects model, and assessed the certainty of evidence (CoE) using the Grading of Recommendations, Assessment, Development and Evaluation approach. RESULTS: We identified 1767 studies and included 55 RCTs with 2518 participants in meta-analyses. The pooled estimate showed that ITF supplementation reduced LDL-C [mean difference (MD) -0.14 mmol/L, 95% confidence interval (95% CI: -0.24, -0.05), 38 RCTs, 1879 participants, very low CoE], triglycerides (MD -0.06 mmol/L, 95% CI: -0.12, -0.01, 40 RCTs, 1732 participants, low CoE), and body weight (MD -0.97 kg, 95% CI: -1.28, -0.66, 36 RCTs, 1672 participants, low CoE) but little to no significant effect on other cardiovascular disease risk factors. The effects were larger when study duration was ≥6 weeks and in pre-obese and obese participants. CONCLUSION: ITF may reduce low-density lipoprotein, triglycerides, and body weight. However, due to low to very low CoE, further well-designed and executed trials are needed to confirm these effects. PROSPERO REGISTRATION NUMBER: CRD42019136745.


Subject(s)
Cardiovascular Diseases , Inulin , Adult , Humans , Inulin/pharmacology , Inulin/therapeutic use , Cardiovascular Diseases/prevention & control , Fructans/pharmacology , Fructans/therapeutic use , Cholesterol, LDL , Randomized Controlled Trials as Topic , Body Weight , Obesity , Triglycerides
7.
Nutrients ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337655

ABSTRACT

The low FODMAP (fermentable oligosaccharide, disaccharide, monosaccharide, and polyol) diet is a beneficial therapeutic approach for patients with irritable bowel syndrome (IBS). However, how the low FODMAP diet works is still not completely understood. These mechanisms encompass not only traditionally known factors such as luminal distension induced by gas and water but also recent evidence on the role of FOMAPs in the modulation of visceral hypersensitivity, increases in intestinal permeability, the induction of microbiota changes, and the production of short-chain fatty acids (SCFAs), as well as metabolomics and alterations in motility. Although most of the supporting evidence is of low quality, recent trials have confirmed its effectiveness, even though the majority of the evidence pertains only to the restriction phase and its effectiveness in relieving abdominal bloating and pain. This review examines potential pathophysiological mechanisms and provides an overview of the existing evidence on the effectiveness of the low FODMAP diet across various IBS subtypes. Key considerations for its use include the challenges and disadvantages associated with its practical implementation, including the need for professional guidance, variations in individual responses, concerns related to microbiota, nutritional deficiencies, the development of constipation, the necessity of excluding an eating disorder before commencing the diet, and the scarcity of long-term data. Despite its recognized efficacy in symptom management, acknowledging these limitations becomes imperative for a nuanced comprehension of the role of a low FODMAP diet in managing IBS. By investigating its potential mechanisms and evidence across IBS subtypes and addressing emerging modulations alongside limitations, this review aims to serve as a valuable resource for healthcare practitioners, researchers, and patients navigating the intricate landscape of IBS.


Subject(s)
Irritable Bowel Syndrome , Humans , FODMAP Diet , Fermentation , Disaccharides , Oligosaccharides/therapeutic use , Diet , Monosaccharides , Diet, Carbohydrate-Restricted
8.
Curr Dev Nutr ; 8(2): 102074, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328774

ABSTRACT

Background: Fiber is an integral part of a healthy diet. Studies have shown that the fiber intake in children is below adequate amounts, leading to adverse health outcomes. Objectives: This study aimed to perform a scoping review to assess the available evidence for the impact of isolated and synthetic dietary fiber on children's health outcomes. Methods: A systematic literature search was conducted in Ovid Medline, Ovid Global Health, Embase, and Cochrane Library via Wiley to identify randomized controlled trials (RCTs) in healthy children aged 1-18 y at baseline who consumed added, isolated, or synthetic dietary fiber. The outcomes of interest were categorized based on the Food and Drug Administration's guidance for industry on nondigestible carbohydrates and the Vahouny Fiber Symposium criteria, which included reduced fasting blood, glucose, total and/or LDL cholesterol concentrations, attenuation of postprandial glycemia/insulinemia, increased fecal bulk/laxation, reduced transit time, weight loss/reduction in adiposity, reduced energy intake from food consumption, increased satiety, bone health/enhanced mineral absorption, and blood pressure. We also cataloged additional reported outcomes. Results: Of 3837 randomized controlled parallel or crossover trials screened at the abstract level, 160 were eligible for full-text review, and 32 included for data extraction. This scoping review presents analysis of data from 32 RCTs in children who were healthy, overweight/obese or had mild hypercholesterolemia. Inulin-type fructans (41%) and psyllium (22%) were the most frequently administered fiber types, with weight/adiposity, markers of lipid metabolism (41%), and bone-related markers (38%) being the most frequently reported health outcomes. Only a few RCTs have investigated the effects of laxation (9%), and none specifically studied the impact of fiber on reducing postprandial glycemia/insulinemia. Conclusions: This scoping review demonstrates sufficient evidence for conducting systematic reviews and meta-analyses for several outcomes. Evidence gaps remain on the impact of isolated fibers on outcomes such as laxation, colonic transit time, and postprandial glycemia/insulinemia in children.

9.
Molecules ; 29(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257195

ABSTRACT

Grains, essential for maintaining good health, contain short-chain carbohydrates like fructans, which can contribute to disorders in some individuals. Understanding and managing these FODMAPs (fermentable oligo-, di-, and monosaccharides and polyols) are essential for enhanced dietary guidance and well-being. The primary objective of the study was to establish safe portion sizes for grains and rice within low-FODMAP diets. A comprehensive analysis of fructan levels in diverse commercial cereal products contributes to an understanding of the potential digestive impact of FODMAPs in grains and supporting enhanced dietary guidance for individuals with FODMAP-related disorders. Various grains, like white and brown rice, barley, wheat groats, and buckwheat, highlight the challenges of handling fructans in a low-FODMAP diet. Fructans to heat-induced degradation, as demonstrated in bulgur, emphasize the need to consider cooking methods for managing their intake. Identification of potentially safe grains, like white long-grain rice and arborio rice, is significant, but caution is advised with barley groats and couscous, stressing personalized dietary decisions. Correlation analyses linking color parameters, moisture content, and fructan levels in cooked grains reveal a positive relationship, suggesting water content's potential impact on fructan stability and grain hydration properties. In conclusion, the study provides valuable insights into the intricate details of FODMAPs in grains, supporting the development of dietary strategies that enhance both health and sensory satisfaction.


Subject(s)
Biological Products , Hordeum , Humans , FODMAP Diet , Edible Grain , Cooking , Fructans
10.
Carbohydr Polym ; 327: 121671, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171684

ABSTRACT

Fructans, are carbohydrates defined as fructose-based polymers with countable degree of polymerization (DP) ranging so far from DP3 to DP60. There are different types of fructans depending on their molecular arrangement. They are categorized as linear inulins and levans, neoseries of inulin and levan, branched graminans, and highly branched neofructans, so called agavins (Agave carbohydrates). It is worth to note that agavins are the most recently described type of fructans and they are also the most complex ones. The complexity of these carbohydrates is correlated to their various isomers and degree of polymerization range, which is correlated to their multifunctional application in industry and human health. Here, we narrate the story of the agavins' discovery. This included their chemical characterization, their benefits, biotechnological applications, and drawbacks over human health. Finally, a perspective of the study of agavins and their interactions with other metabolites through metabolomics is proposed.


Subject(s)
Agave , Humans , Agave/chemistry , Carbohydrates , Fructans/chemistry , Inulin/metabolism , Fructose/metabolism
11.
Carbohydr Polym ; 327: 121682, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171691

ABSTRACT

Fructans are water-soluble polymers of fructose in which fructose units are linked by ß-(2 â†’ 1) and/or ß-(2 â†’ 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization. We report the production of two monoclonal antibodies (named BTM9H2 and BTM15A6) using mice immunization with antigenic compounds prepared from a mixture of plant inulins and levans conjugated to serum albumin. Their specificity towards fructans with ß-(2 â†’ 1) and/or ß-(2 â†’ 6) linkage has been demonstrated by immuno-dot blot tests on a wide range of carbohydrates. The two mAbs were used for immunocytolocalization of fructans by epifluorescence microscopy in various plant species. Fructan epitopes were specifically detected in fructan-accumulating plants, inside cells as well as on the surface of root tips, confirming both extracellular and intracellular localizations. The two mAbs provide new tools to identify the mechanism of extracellular fructan secretion and explore the roles of fructans in stress resistance and plant-microorganism interactions.


Subject(s)
Antibodies, Monoclonal , Fructans , Animals , Mice , Plants , Inulin , Fructose
12.
Int J Biol Macromol ; 256(Pt 1): 128030, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981289

ABSTRACT

Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 â†’ or →2)-Fruf-(1 â†’ with branching →1,6)-Fruf-(2 â†’ and terminates in Glcp-(1 â†’ or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.


Subject(s)
Fructans , Polygonatum , Fructans/chemistry , Inulin/chemistry , Polygonatum/chemistry , Hydrolysis , Polysaccharides/chemistry , Glucose , Acids
13.
Food Chem ; 430: 136923, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37517944

ABSTRACT

A new electrode management, within the HPAEC-PAD systems, was proposed to measure inulin-type fructans in chicory roots, grown under two lighting periods: 12 h (T-12 h) and 24 h continuous lighting (T-24 h-CL), with the same daily light integral (DLI). The amperometric cell turn-off (PAD-Off) after elution of carbohydrate of interest, allowed the stabilization of the PAD response, avoiding excessive electrode surface oxidation. The enhanced signal stability allowed the application of fucose as internal standard (ISTD) for data normalization, improving the correctness of linear calibration curves and the quantification of fructans in the case study of chicory plants. T-24 h-CL decreased FW and DW of chicory leaves while increasing these parameters in roots. Fructans amount in chicory roots was significantly higher in the T-24-CL photoperiod. The accuracy of prebiotics quantification by PAD-Off emphasized significant differences between light treatments. CL can improve the yield and quality of chicory roots.


Subject(s)
Cichorium intybus , Inulin , Inulin/metabolism , Fructans/metabolism , Prebiotics , Plant Roots/metabolism
14.
Dokl Biol Sci ; 512(1): 343-353, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38087025

ABSTRACT

The review considers the chemical structure specifics and distribution in plants for fructose-containing carbohydrates (fructans). Various biological activities were observed in fructans and associated with their physicochemical features. Fructans affect many physiological and biochemical processes in the human body, improving health and reducing the risk of various disorders. Prebiotic activity is the most important physiological function of fructans. Fructans improve the microflora composition in the colon and intestinal mucosa by increasing the content of useful bacteria and decreasing the content of potentially harmful microorganisms, stimulate the physiological functions of the microflora, and provide for a better state of the intestine and a better health status. By modifying the intestinal microbiota and utilizing certain additional mechanisms, fructans can favorably affect the immune function, decrease the risk of various inflammatory processes, and to reduce the likelihood of tumorigenesis due to exposure to carcinogens. Fructans improve carbohydrate and lipid metabolism by reducing the blood levels of glucose, total cholesterol, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) and increasing the blood content of high-density lipoprotein (HLD). Fructans are low in calories, and their use in foods reduces the risk of obesity. Fructans facilitate higher calcium absorption and increase the bone density, thus reducing the risk of osteoporosis. Fructants protect the body from oxidative stress, intestinal infections, and parasitic invasions.


Subject(s)
Fructose , Inulin , Humans , Inulin/physiology , Fructans/pharmacology , Fructans/chemistry , Fructans/metabolism , Plants/metabolism
15.
Article in English | MEDLINE | ID: mdl-38127241

ABSTRACT

The use of antibiotics unbalances the intestinal microbiota. Probiotics, prebiotics, and synbiotics are alternatives for these unbalances. The effects of a new synbiotic composed of probiotic Saccharomyces boulardii CNCM I-745 and fructans from Agave salmiana (fAs) as prebiotics were assessed to modulate the intestinal microbiota. Two probiotic presentations, the commercial probiotic (CP) and the microencapsulated probiotic (MP) to improve those effects, were used to prepare the synbiotics and feed Wistar rats subjected to antibiotics (AB). Eight groups were studied, including five controls and three groups to modulate the microbiota after the use of antibiotics: G5: AB + MP-synbiotic, G6: AB + CP-synbiotic, and G8: AB + fAs. All treatments were administered daily for 7 days. On days 7 and 21, euthanasia was performed, cecum tissue was recovered and used to evaluate histological analysis and to study microphotograph by TEM, and finally, bacterial DNA was extracted and 16S rRNA gene metabarcode sequencing was performed. Histological analysis showed less epithelial damage and more abundance of the intestinal microbiota in the groups G5, G6, and G8 in comparison with the AB control group after 7 days. Microphotograph of the cecum at 2 weeks post treatment showed that G5 and G6 presented beneficial effects in epithelial reconstruction. Interestingly, in the groups that used the synbiotic without AB (G3 and G4) in addition to contributing to the recovery of the autochthonous microbiota, it promotes the development of beneficial microorganisms; those results were also achieved in the groups that used the synbiotic with AB enhancing the bacterial diversity and regulating the impact of AB.

16.
Nutrients ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140276

ABSTRACT

Enhancing the effectiveness of exercise for long-term body weight management and overall health benefits may be aided through complementary dietary strategies that help to control acute postexercise energy compensation. Inulin-type fructans (ITFs) have been shown to induce satiety through the modified secretion of appetite-regulating hormones. This study investigated the acute impact of oligofructose-enriched inulin (OI) consumption after exercise on objective and subjective measures of satiety and compensatory energy intake (EI). In a randomized crossover study, following the completion of a 45 min (65-70% VO2peak) evening exercise session, participants (BMI: 26.9 ± 3.5 kg/m2, Age: 26.8 ± 6.7 yrs) received one of two beverages: (1) sweetened milk (SM) or (2) sweetened milk + 20 g OI (SM+OI). Perceived measures of hunger were reduced in SM+OI relative to SM (p = 0.009). Within SM+OI, but not SM, plasma concentrations of GLP-1 and PYY were increased and acyl-ghrelin reduced from pre-exercise to postexercise. EI during the ad libitum breakfast in the morning postexercise tended to be lower in SM+OI (p = 0.087, d = 0.31). Gastrointestinal impacts of OI were apparent with increased ratings of flatulence (p = 0.026, d = 0.57) in participants the morning after the exercise session. Overall, the ingestion of a single dose of OI after an exercise session appears to induce subtle reductions in appetite, although the impact of these changes on acute and prolonged EI remains unclear.


Subject(s)
Appetite , Inulin , Humans , Young Adult , Adult , Appetite/physiology , Inulin/pharmacology , Cross-Over Studies , Oligosaccharides/pharmacology , Ghrelin , Energy Intake/physiology , Peptide YY
17.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37974045

ABSTRACT

AIMS: Acetic acid bacteria of the genus Bombella have not been reported to produce exopolysaccharides (EPS). In this study, the formation of fructans by B. apis TMW 2.1884 and B. mellum TMW 2.1889 was investigated. METHODS AND RESULTS: Out of eight strains from four different Bombella species, only B. apis TMW 2.1884 and B. mellum TMW 2.1889 showed EPS formation with 50 g l-1 sucrose as substrate. Both EPS were identified as high-molecular weight (HMW) polymers (106-107 Da) by asymmetric flow field-flow fractionation coupled to multi angle laser light scattering and UV detecors (AF4-MALLS/UV) and high performance size exclusion chromatography coupled to MALLS and refractive index detectors (HPSEC-MALLS/RI) analyses. Monosaccharide analysis via trifluoroacetic acid hydrolysis showed that both EPS are fructans. Determination of glycosidic linkages by methylation analysis revealed mainly 2,6-linked fructofuranose (Fruf) units with additional 2,1-linked Fruf units (10%) and 2,1,6-Fruf branched units (7%). No glycoside hydrolase (GH) 68 family genes that are typically associated with the formation of HMW fructans in bacteria could be identified in the genomes. Through heterologous expression in Escherichia coli Top10, an enzyme of the GH32 family could be assigned to the catalysis of fructan formation. The identified fructosyltransferases could be clearly differentiated phylogenetically and structurally from other previously described bacterial fructosyltransferases. CONCLUSIONS: The formation of HMW fructans by individual strains of the genus Bombella is catalyzed by enzymes of the GH32 family. Analysis of the fructans revealed an atypical structure consisting of 2,6-linked Fruf units as well as 2,1-linked Fruf units and 2,1,6-Fruf units.


Subject(s)
Fructans , Sucrose , Fructans/chemistry , Glycoside Hydrolases/genetics , Molecular Weight , Catalysis
18.
Nutrients ; 15(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37960346

ABSTRACT

According to unofficial data, every fifth person in Serbia suffers from some form of irritable bowel syndrome (IBS). Compounds classified as FODMAPs (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) are newly found potential triggers of IBS and a number of associated gastrointestinal disorders. Cereals, predominantly in their wholegrain form, represent the key contributors to the high contents of FODMAPs in wholegrain (high-fiber) bakery products. The current work was structured in a way to systematically evaluate the consumer's knowledge and preferences toward wholegrain and low-FODMAP bakery products. The questionnaire was filled out by 725 respondents, aged from 18 to 86 years. They were informed about the aim of the research and management of anonymous data. The present study is the first detailed survey in this region of Europe, aiming to improve the familiarity with and attitude toward FODMAPs and a low-FODMAP diet by analyzing the different dietary habits regarding wholegrain-cereal-based products among consumers of various ages, genders, places of residence, and education. The results suggest that the respondents are, to some degree, aware of the health benefits of consuming foods with high fiber content while indicating a low level of knowledge about FODMAP compounds and connected topics. Education about contemporary scientific findings and the potentially harmful effects of consuming FODMAP compounds for a population with gastrointestinal disorders and diseases will be imperative in the future.


Subject(s)
Irritable Bowel Syndrome , Oligosaccharides , Humans , Male , Female , Serbia , Carbohydrates , Monosaccharides/adverse effects , Fermentation , Disaccharides
19.
World J Microbiol Biotechnol ; 39(11): 299, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37667093

ABSTRACT

The aim of this work was to find out if biofilms can be made by lactic acid bacteria (LAB) isolated from agave plants using agave fructans as sole carbohydrate substrates or if it was necessary to use fructose as a breakdown product of such polymers. This is part of a research project geared to develop industrial lactic acid production from agave fructans, an abundant raw material in Mexico's agave plantations. Present results showed that nine strains of LAB isolated from Agave salmiana and belonging to genus Lacticaseibacillus and Enterococcus produced exopolysaccharides directly from agave fructans to a greater extent than with fructose. The best polysaccharide productions in planktonic cultures were Lacticaseibacillus paracasei strains DG2, DG3, DG4 and DG8. Furthermore, all nine LAB strains produced biofilms on polystyrene microplates, much better with agave fructans than with fructose. In most strains, biofilm formation was favored at pH from 6.0 to 6.5, except for strains DG7 and DG9 where pH 5.5 was optimal. Biofilm formation required between 3 and 5 days of incubation in all Lacticaseibacillus paracasei strains, whereas Enterococcus faecium required a little less of 3 days. Present results support the straight use of agave fructans to develop LAB biofilms using agave epiphytic bacteria. This finding simplifies upstream processing of agave fructans to be used for future lactic acid fermentation in LAB biofilm reactors.


Subject(s)
Agave , Lacticaseibacillus paracasei , Lactobacillales , Fructans , Biofilms , Fructose , Lactic Acid
20.
Curr Res Food Sci ; 7: 100595, 2023.
Article in English | MEDLINE | ID: mdl-37744554

ABSTRACT

Fructans, fructose polymers, are one of the three major reserve carbohydrate in plants. The nutritional and therapeutic benefits of natural fructans in plants have attracted increasing interest by consumers and food industry. In the course of evolution, many plants have developed the ability of regulating plant fructans metabolism to produce fructans with different structures and chain lengths, which are strongly correlated with their survival in harsh environments. Exploring these evolution-related genes in fructans biosynthesis and de novo domestication of fructans-rich plants based on genome editing is a viable and promising approach to improve human dietary quality and reduce the risk of chronic disease. These advances will greatly facilitate breeding and production of tailor-made fructans as a healthy food ingredient from wild plants such as huangjing (Polygonatum cyrtonema). The purpose of this review is to broaden our knowledge on plant fructans biosynthesis, evolution and benefits to human health.

SELECTION OF CITATIONS
SEARCH DETAIL
...