Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; : 1-22, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316729

ABSTRACT

Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPSPHE@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPSPHE@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation in vitro. In vivo experiments on diabetic mice with DR revealed that NPSPHE@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPSPHE@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.

2.
J Ethnopharmacol ; 321: 117550, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38065350

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vascular endothelial cell senescence is associated with cardiovascular complications in diabetes. Essential oil from Fructus Alpiniae zerumbet (Pers.) B.L.Burtt & R.M.Sm. (EOFAZ) has potentially beneficial and promising diabetes-related vascular endothelial cell senescence-mitigating effects; however, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY: To investigate the molecular effects of EOFAZ on vascular endothelial cell senescence in diabetes. MATERIALS AND METHODS: A diabetes mouse model was developed using a high-fat and high-glucose diet (HFD) combined with intraperitoneal injection of low-dose streptozotocin (STZ, 30 mg/kg) and oral treatment with EOFAZ. 4D label-free quantitative proteomics, network pharmacology, and molecular docking techniques were employed to explore the molecular mechanisms via which EOFAZ alleviates diabetes-related vascular endothelial cell senescence. A human aortic endothelial cells (HAECs) senescence model was developed using high palmitic acid and high glucose (PA/HG) concentrations in vitro. Western blotting, immunofluorescence, SA-ß-galactosidase staining, cell cycle, reactive oxygen species (ROS), cell migration, and enzyme linked immunosorbent assays were performed to determine the protective role of EOFAZ against vascular endothelial cell senescence in diabetes. Moreover, the PPAR-γ agonist rosiglitazone, inhibitor GW9662, and siRNA were used to verify the underlying mechanism by which EOFAZ combats vascular endothelial cell senescence in diabetes. RESULTS: EOFAZ treatment ameliorated abnormal lipid metabolism, vascular histopathological damage, and vascular endothelial aging in diabetic mice. Proteomics and network pharmacology analysis revealed that the differentially expressed proteins (DEPs) and drug-disease targets were associated with the peroxisome proliferator-activated receptor gamma (PPAR-γ) signalling pathway, a key player in vascular endothelial cell senescence. Molecular docking indicated that the small-molecule compounds in EOFAZ had a high affinity for the PPAR-γ protein. Western blotting and immunofluorescence analyses confirmed the significance of DEPs and the involvement of the PPAR-γ signalling pathway. In vitro, EOFAZ and rosiglitazone treatment reversed the effects of PA/HG on the number of senescent endothelial cells, expression of senescence-related proteins, the proportion of cells in the G0/G1 phase, ROS levels, cell migration rate, and expression of pro-inflammatory factors. The protective effects of EOFAZ against vascular endothelial cell senescence in diabetes were aborted following treatment with GW9662 or PPAR-γ siRNA. CONCLUSIONS: EOFAZ ameliorates vascular endothelial cell senescence in diabetes by activating PPAR-γ signalling. The results of the present study highlight the potential beneficial and promising therapeutic effects of EOFAZ and provide a basis for its clinical application in diabetes-related vascular endothelial cell senescence.


Subject(s)
Diabetes Mellitus, Experimental , Oils, Volatile , Humans , Mice , Animals , Endothelial Cells , PPAR gamma/metabolism , Rosiglitazone/metabolism , Rosiglitazone/pharmacology , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oils, Volatile/pharmacology , Molecular Docking Simulation , Network Pharmacology , Proteomics , RNA, Small Interfering , Glucose/metabolism
3.
Chin Med ; 15: 4, 2020.
Article in English | MEDLINE | ID: mdl-31938037

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) involves extensive retinal damage and is one of the most common and serious complications of diabetes mellitus. Hyperglycemia is the major pathological trigger for diabetic complications. Müller cell gliosis, a key pathophysiological process in DR, could finally lead to vision loss. Our previous finding revealed that the essential oil of Fructus Alpiniae zerumbet (EOFAZ) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury via the PPAR-γ signal. However, Whether EOFAZ could prevent HG-induced Müller cell gliosis through the PPAR signaling remains unclear. METHODS: The neuroprotective effects of EOFAZ were evaluated in HG-treated rat retinal Müller cells (RMCs) and DR rat model. RESULT: GFAP and VEGF upregulation is the biomarker of Müller glial reactivity gliosis. Results suggested that EOFAZ could remarkably ameliorate retinal reactive gliosis by suppressing p-CREB and GFAP and VEGF downstream effectors. Its effects on PPAR-γ, a major target for currently available anti-diabetes drugs, were also investigated. EOFAZ treatment remarkably attenuated the reduction of PPAR-γ and high level of p-CaMK II and p-CREB in HG-treated RMCs and diabetic rats. Furthermore, the activation and ectopic expression of PPAR-γ downregulated p-CREB and p-CaMK II in HG-treated RMCs. By contrast, CaMK II inhibitor KN93 and CREB gene silencing did not significantly affect the PPAR-γ expression. CONCLUSIONS: A novel PPAR-γ-p-CREB signaling pathway accounts for the inhibitory effect of EOFAZ on RMCs gliosis. These findings provide scientific evidence for the potential use of EOFAZ as a complementary and alternative medicine for DR prevention and treatment in the future.

4.
Biomed Chromatogr ; 32(3)2018 Mar.
Article in English | MEDLINE | ID: mdl-28991393

ABSTRACT

Fructus Alpiniae zerumbet is widely used in Guizhou province as a miao folk herb with anti-inflammatory, analgesic, protection against cardiovascular diseases, antihypertension and antioxidant activities. To further investigate the chemical material basis, the spectrum-effect relationship was established using gray relational analysis between the chromatographic fingerprint and its bioactivities. Herein, the fingerprints of essential oils from Fructus Alpiniae zerumbet (EOFAZ) from various sources were determined by gas chromatography mass spectrometry, and the analgesic and anti-inflammatory bioactivities were investigated using the mouse model of acetic acid-induced writhing test and dimethylbenzene-induced mouse ear edema test. Finally, 17 common peaks were identified from nine batches of A. zerumbet, by comparison with the standard mass spectra in Nist2005, Wiley275 library. Meanwhile, the results showed significant analgesic and anti-inflammatory effects in all of the different sources of EOFAZ. In particularly, peak 1 (α-pipene), peak 3 (ß-pinene), peak 9 (camphor) and peak 16 (α-cadinol) might be the main bioactive ingredients for analgesic and anti-inflammatory activities. The model of the spectrum-effect relationships of EOFAZ was successfully discovered, which provided a novel platform for finding the bioactive components, a theoretical foundation for its further study and helping to establish quality control of Fructus A. zerumbet.


Subject(s)
Alpinia/classification , Analgesics/analysis , Analgesics/pharmacology , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Oils, Volatile/chemistry , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Behavior, Animal/drug effects , Edema , Female , Gas Chromatography-Mass Spectrometry , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL