Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.702
Filter
1.
Curr Res Food Sci ; 9: 100791, 2024.
Article in English | MEDLINE | ID: mdl-38979544

ABSTRACT

The utmost objective of every nation is to achieve zero hunger and ensure the health and well-being of its population. However, in impoverished nations, particularly in rural areas, such issues persist on a daily basis. Currently, there is a growing demand for fruit consumption due to their potential health benefits. Surprisingly, their most prevalent by-product is pomace, which is produced in millions of tonnes and is usually discarded as waste after processing or consumption. Even food produced with these kinds of raw resources can contribute to the objective of eradicating world hunger. Owing to these advantages, scientists have begun evaluating the nutritional content of various fruit pomace varieties as well as the chemical composition in different bioactive constituents, which have significant health benefits and can be used to formulate a variety of food products with notable nutraceutical and functional potential. So, the purpose of this review is to understand the existing familiarity of nutritional and phytochemical composition of selected fruit pomaces, those derived from pineapple, orange, grape, apple, and tomato. Furthermore, this article covers pre-clinical and clinical investigations conducted on the selected fruit pomace extracts and/or powder forms and its incorporation into food products and animal feed. Adding fruit pomaces reduces the glycemic index, increases the fibre content and total polyphenolic contents, and reduces the cooking loss, etc. In animal feeds, incorporating fruit pomaces improves the antioxidant enzyme activities, humoral immune system, and growth performance and reduces methane emission.

2.
Food Chem ; 457: 140199, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38955121

ABSTRACT

Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.

3.
Prev Nutr Food Sci ; 29(2): 170-177, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38974587

ABSTRACT

This study aimed to investigate the potential in vitro antihyperglycemic activity of honey sourced from three different species of stingless bees (Heterotrigona itama, Geniotrigona thoracica, and Kelulut matahari) by assessing their α-glucosidase enzyme inhibition, antioxidant activity, and total phenolic and flavonoid contents in comparison with honey from Apis cerana, obtained from West Sumatra, Indonesia. The honey samples were obtained from stingless bee farms at the Faculty of Animal Science, Universitas Andalas. Variations were observed in α-glucosidase enzyme inhibition, antioxidant activity (half maximal inhibitory concentration, IC50), and total phenolic and flavonoid contents among the honey samples from H. itama, G. thoracica, K. matahari, and A. cerana. In terms of α-glucosidase inhibition, honey from the stinging bee A. cerana demonstrated higher inhibition than that from the other three stingless bees species. Honey derived from K. matahari exhibited the lowest IC50 value, indicating its superior antioxidant activity, followed by honey from A. cerana, H. itama, and G. thoracica. The highest total phenolic and flavonoid contents were found in honey from A. cerana, followed by honey from K. matahari, H. itama, and G. thoracica. Analysis using Fourier-transform infrared spectroscopy revealed that the predominant absorptions in all four honey samples were observed at 767∼1,643 cm-1, indicating that absorptions are primarily ascribed to monosaccharides and disaccharides. Additionally, some peaks implied the presence of phenolic and flavonoid compounds. Overall, honey from stingless bees shows promise as an antihyperglycemic food, as evidenced by its α-glucosidase enzyme inhibition activity, antioxidant activity, and relatively high total phenolic content.

4.
Heliyon ; 10(11): e32342, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947460

ABSTRACT

This study investigates the potential of yacon (Smallanthus sonchifolius) juice for the development of prebiotic-rich organic apple-based snacks. Yacon syrup, primarily composed of fructan, inulin, fructooligosaccharides (FOS), and free sugars, represents a promising nutraceutical product. Its great potential in food processing, particularly as an innovative source of prebiotics, has been demonstrated both in vitro and in vivo since it is fermented specifically by lactobacilli and bifidobacteria. Our objective was to explore the feasibility of employing vacuum impregnation process to incorporate yacon juice into organic apples, followed by hot air drying for the formulation of dried organic apple-based snacks with health-enhancing attributes. We assessed the prebiotic and physicochemical characteristics of the impregnated snacks, also considering 50 days of storage at room temperature. Vacuum impregnation and air drying produced dried apple slices impregnated with yacon juice with good quality and stability. Higher levels of fructan (16-fold difference compared to non-impregnated apples) in the apple slices increased their prebiotic potential, promoting the growth and viability of cells within simulated intestinal fluid, including strains of Bifidobacterium animalis subsp. lactis BB -12, Bifidobacterium breve DSM 20091, Bifidobacterium longum subsp. infantis DSM 20088, Lacticaseibacillus rhamnosus GG and Lacticaseibacillus rhamnosus C112, even after prolonged storage. Remarkably, the physicochemical parameters of the impregnated and dried apple slices remained nearly constant and akin to the control samples. Therefore, the combination of vacuum impregnation and air drying has the potential to be used to produce enriched prebiotic organic apple snacks, providing consumers with additional health benefits, including enhanced gut health, with its associated implications, and increased satiety. This innovation could contribute to the development of health-promoting food products with improved nutritional profiles.

5.
Plant Foods Hum Nutr ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951375

ABSTRACT

This study aimed at comparing the carbohydrate composition of three banana varieties (cv. Nanica, Nanicão, and Prata) and investigating the effect of a single dose of cooked green banana pulp beverage (GBPd) on plasma glycemic homeostasis indexes (glucose, PYY, GIP, insulin) and hunger and satiety sensation (visual analog scale-VAS). The bananas were classified according to the color scale. The fiber, total carbohydrate, and resistant starch (RS) were determined using validated methods. Glucose homeostasis indexes and hunger/satiety sensation were determined in ten healthy women in two stages before and after intake: (1) glucose solution (250 g/L); (2) one week later, consumption of the glucose solution plus 75 g/L of GBPd. Blood samples were collected twice in stage-1 and every 15 min for 2 h in stage-2. Cv. Nanicão was selected, because it presented a higher content in RS and dietary fiber on dry base than the other cultivars. Thus, it was used to test glycemic response. After 2 h of GBPd intake, no difference was observed in hunger/satiety sensation and plasma glycemic homeostasis indexes, except for a decrease in plasma glucose concentration (-15%, p = 0.0232) compared to stage-1. These results suggest that cv. Nanicão has a higher potential as a functional ingredient and can influence the reduction in the glycemic index of a meal compared to other cultivars. However, it had not a short-term effect on hormones GIP and PYY in healthy women. Further research is needed to understand the long-term effects and mechanisms of green banana on glycemic control and satiety.

6.
Biosci Microbiota Food Health ; 43(3): 222-226, 2024.
Article in English | MEDLINE | ID: mdl-38966046

ABSTRACT

This research investigated and compared the prebiotic properties of a rice bran extract obtained through commercial xylanase extraction in comparison with water extraction. Prebiotic properties were evaluated by probiotic growth stimulation (Lacticaseibacillus casei and Lactiplantibacillus plantarum) and gastrointestinal pathogen inhibition (Bacillus cereus and Escherichia coli). The rice bran extract obtained with xylanase (RB1) displayed significantly higher total polysaccharide and total reducing sugar contents than those obtained with water (RB2; p<0.05). After extraction for 30 min, RB1 exhibited the highest total polysaccharide and total reducing sugar contents. HPLC (high performance liquid chromatography) analysis revealed that RB1 primarily contained xylose, while RB2 contained less glucose and lacked other sugar derivatives. RB1 proved effective in stimulating the growth of L. casei and L. plantarum, surpassing even inulin (a commercial prebiotic). Furthermore, it demonstrated a high potential for inhibiting the growth of pathogenic B. cereus and E. coli, comparable to inulin. In contrast, RB2 exhibited lower inhibitory capacity against B. cereus and E. coli.

7.
Eur J Pediatr ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972965

ABSTRACT

Green banana Musa paradisiaca (GB) has been traditionally used to aid in the treatment of diarrhea. This systematic review and meta-analysis aimed to evaluate current evidence of the effect of GB consumption as a complement to standard treatment in the population with acute or persistent diarrhea. We searched PubMed, Scopus, Web of Science, and LILACS from inception to January 2024; there was no language restriction. Only randomized controlled trials using GB as an intervention were included, and studies using antidiarrheal medication were excluded. A meta-analysis was performed to compare the effect of GB on the resolution of acute and persistent diarrhea. To measure the certainty of evidence, the GRADE assessment was used. Nine randomized controlled trials (seven open and two blinded) were included. Studies were conducted in the pediatric population comprising a total of 3996 patients aged 8 to 34 months, eight studies were written in English and one in Spanish. GB-based food consumption significantly increased the hazard of resolution of diarrhea compared to standard treatment (HR 1.96, 95% CI [1.62; 2.37], p < 0.01; I2 = 52%). The subgroup analysis showed a higher hazard of resolution of diarrhea for children with persistent diarrhea (HR 2.34, 95% CI [1.78; 3.08] compared to acute diarrhea (HR 1.74, 95% CI [1.45; 2.09]).Conclusions: The use of green banana-based foods as a complement to standard treatment in children is probably associated with a faster resolution in acute diarrhea and may aid in the treatment of persistent diarrhea. More clinical trials are necessary to assess if a synergistic effect between GB and other foods exists and proves to be better than GB alone. These findings need to be confirmed in diverse socioeconomic contexts, within the adult population, and under varying health conditionsTrial registration: CRD42024499992.

8.
Int J Biol Macromol ; 272(Pt 2): 132884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844274

ABSTRACT

The food industry is undergoing a significant transformation with the advancement of 3D technology. Researchers in the field are increasingly interested in using protein and protein-polysaccharide composite materials for 3D printing applications. However, maintaining nutritional and sensory properties while guaranteeing printability of these materials is challenging. This review examines the commonly used protein and composite materials in food 3D printing and their roles in printing inks. This review also outlines the essential properties required for 3D printing, including extrudability, appropriate viscoelasticity, thixotropic properties, and gelation properties. Furthermore, it explores the wide range of potential applications for 3D printing technology in novel functional foods such as space food, dysphagia food, kid's food, meat analogue, and other specialized food products.


Subject(s)
Functional Food , Polysaccharides , Printing, Three-Dimensional , Proteins , Polysaccharides/chemistry , Proteins/chemistry , Humans , Ink , Viscosity
9.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893306

ABSTRACT

An increased demand for natural products nowadays most specifically probiotics (PROs) is evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is well known that encapsulation could positively affect the PROs' viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various double/multilayer strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic atomization or electrospraying technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PROs-loaded carriers. Finally, their applications in food products are presented. The resistance and viability of loaded PROs to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems, are also described. The PROs encapsulation in double- and multiple-layer coatings combined with other technologies can be examined to increase the opportunities for new functional products with amended functionalities opening a novel horizon in food technology.


Subject(s)
Probiotics , Probiotics/chemistry , Emulsions , Humans , Drug Carriers/chemistry , Drug Compounding/methods , Food Technology/methods
10.
Food Chem ; 456: 139945, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38850604

ABSTRACT

This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.

11.
Curr Vasc Pharmacol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38847159

ABSTRACT

BACKGROUND: Hypertension is associated with endothelial dysfunction. An imbalance in the production of Nitric Oxide (NO) and Reactive Oxygen Species (ROS), leading to impaired NO-cyclic Guanosine Monophosphate (cGMP) pathway, contributes to this disorder. Red Yeast Rice (RYR), produced from the fermentation of rice with Monascus purpureus, is a traditional functional food originating from China. Although recognized for its anti-dyslipidemia properties, there has been growing evidence regarding the anti-hypertensive effects of RYR. However, these studies only focused on its direct and short-term effects. AIM: This study aims to investigate the vasoprotective effects of chronic oral RYR administration using Spontaneously Hypertensive Rats (SHR). MATERIALS AND METHODS: SHR were randomly divided into 3 groups: SHR - Control; SHR - RYR extract (100 mg/kg/day); SHR - lovastatin (10 mg/kg/day). Wistar-Kyoto Rats (WKY) were used as normotensive controls. All animals were treated for 12 weeks by oral gavage. Systolic Blood Pressure (SBP) was measured weekly (tail-cuff method). Vascular reactivity was determined using isolated rat aortic rings in an organ bath. Aortic ROS, NO, tetrahydrobiopterin (BH4 ), and cGMP levels were evaluated. RESULTS: Administration of RYR attenuated SBP elevation and enhanced endothelium-dependent vasodilation in aortic rings. In addition, RYR decreased ROS production and significantly improved the level of vascular NO, BH4, and cGMP. CONCLUSION: In an SHR model, treatment with RYR for 12 weeks exerts an SBP lowering effect that can be attributed to improved vascular function via reduction of oxidative stress, decreased endothelial NO Synthase (eNOS) uncoupling and enhanced NO-cGMP pathway.

12.
Food Sci Nutr ; 12(6): 3982-3992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873473

ABSTRACT

The regular intake of Lycium barbarum (goji berry) is supposed to play an important role in the promotion of human health. Regarding, its incorporation into staple foods, including bread, seems to be effective. However, it requires the evaluation of dough behavior and final product quality. This study investigated the effect of goji berry incorporation at levels of 10, 15, 20, 25, and 30% ww-1 on the textural, physicochemical, and sensory properties of wheat bread. Results indicated a significant enhancement of water absorption and gelatinization temperature in composite flour via the inclusion of goji berry powder (p < 0.05). Using goji berry powder up to 20% ww-1 has shown to obtain the structure able to restore gases through the baking process and provide enhancement in a specific volume at about 10%. Alongside, the hardness of composite bread decreased, and the optimal hardness was observed at formulations containing 20% w/w goji berry powder with a value equal to 1199.95 ± 0.05 g, which is supposed to be induced by the higher specific volume and lower moisture content of bread samples. Moreover, color and sensory perception have been found to be significantly changed by goji berry substitution. Goji berry substitution up to 20% ww-1 is found to be preferred by the consumer, and a drop in overall acceptability was observed at its higher inclusion. The technological characteristic changes induced by goji berry incorporation are induced by its gluten dilution impact. However, the gel-like structure formed by the high fiber content of goji berries compensates for this adverse impact up to 20% w/w substitution level.

13.
Meat Sci ; 216: 109578, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38917677

ABSTRACT

Novel shelf-stable and high-protein meat products that are affordable, convenient, and healthy are hot topic in current food innovation trends. To offer technological databases for developing new functional lamb meat products, this study aimed to evaluate the technological and sensory aspects of dry-cured lamb meat snacks incorporated with the probiotic culture Lactobacillus paracasei and the prebiotic lactulose. Four formulations were analyzed: control (without prebiotic or probiotic); PREB (with 2% lactulose); PROB (with 107 CFU/g of L. paracasei); and SYMB (with 2% lactulose and 107 CFU/g of L. paracasei). Fitted curves revealed that weight-loss behavior during snack ripening was not affected (P > 0.05) by treatments. Snack moisture, water activity, pH, titratable acidity, lipid oxidation, and residual nitrite were affected (P < 0.05) only by ripening time. The target probiotic strain stood out against competitive flora and was detected at 107 CFU/g in the snack-supplemented formulations (PROB and SYMB). In snacks supplemented with prebiotics (PREB and SYMB), the lactulose content was maintained at 2.17%. Significant differences were not observed in the chemical composition, texture profiles, and CIE color indices between the proposed functional snacks and the control. In addition to texture, flavor, and overall impression evaluation, only color attributes were positively impacted (P < 0.05) in the acceptance and multiple comparison tests against the control. The proposed formulation and bench process parameters produced potential nutritionally and sensory-appreciated, microbiologically stable, and safe (multi-hurdle perspective) functional high-protein restructured lamb snacks.

14.
Foods ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928756

ABSTRACT

In the current study, the prebiotic potential of an innovative functional pasta enriched with 12% (w/w) inulin was investigated. To this aim, pasta was subjected to in vitro gastrointestinal digestion followed by simulated gut fermentation compared to the control pasta (CTRL) not containing inulin. The incorporation of inulin positively (p < 0.05) affected some organoleptic traits and the cooking quality of the final product, giving an overall score significantly higher than CTRL. The resultant essential amino acid content was similar in both pasta samples while the total protein content was lower in inulin-enriched pasta for the polymer substitution to durum wheat flour. The prebiotic potential of chicory inulin was preliminarily tested in in vitro experiments using seven probiotic strains and among them Lacticaseibacillus paracasei IMPC2.1 was selected for the simulated gut fermentation studies. The positive prebiotic activity score registered with the probiotic strain suggested the suitability of the inulin-enriched pasta with respect to acting as a prebiotic source favoring the growth of the probiotic strain and short chain fatty acid (SCFA) production. The present study contributes to broadening knowledge on the prebiotic efficacy of inulin when incorporated into a complex food matrix.

15.
Food Chem ; 455: 139848, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823122

ABSTRACT

Supercritical fluid extraction (SFE) employing carbon dioxide (SC-CO2) is an efficient method to extract bioactive compounds from agro-forest wastes. These compounds maintain and/or improve food nutrition, safety, freshness, taste, and health and are employed as natural functional food components. To highlight the potential of this technology, we focus on the following current advances: (I) parameters affecting solubility in SFE (pressure, temperature, SC-CO2 flow rate, extraction time, and co-solvents); (II) extraction spectra and yield obtained according to proportion and composition of co-solvents; (III) extract bioactivity for functional food production. Fatty acids, monoterpenes, sesquiterpenes, diterpenoids, and low-polarity phenolic acids and triterpenoids were extracted using SFE without a co-solvent. High-polarity phenolic acids and flavonoids, tannins, carotenoids, and alkaloids were only extracted with the help of co-solvents. Using a co-solvent significantly improved the triterpenoid, flavonoid, and phenolic acid yield with a medium polarity.


Subject(s)
Chromatography, Supercritical Fluid , Functional Food , Chromatography, Supercritical Fluid/methods , Forests , Functional Food/analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Waste Products/analysis
16.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892691

ABSTRACT

In the present study, the effect of the addition of quince and collagen type I and III to dessert chocolate on its functional properties was determined. The study evaluated the antioxidant potential of the tested formulations using the FRAP method and the linoleic acid oxidation test and beta-carotene bleaching test. The tested samples were also evaluated for inhibitory activity against enzymes important in preventive health (inflammation and neurodegenerative disorders) namely: AChE, BChE, GR, GPx, COX, and SOD. The addition of quince and collagen to the chocolate samples resulted in higher activity compared to the control sample, as indicated by the FRAP test. The experiment highlighted the impact of including quince fruit on the antioxidant activity of the chocolate samples. Interestingly, merely increasing the quince fruit amount did not consistently enhance antioxidant potential. Specifically, chocolate samples with a lower proportion of quince fruit (2 g/100 g) exhibited greater antioxidant activity when supplemented with collagen I. Conversely, in samples with higher quince percentages (3 g and 4 g), those enriched with collagen III showed higher antioxidant activity. Similar correlations were observed in the linoleic acid oxidation test. Notably, samples containing 3 g and 4 g of quince and type III collagen demonstrated statistically similar highest antioxidant properties. Regardless of the collagen type used, there was no observed increase in activity towards the tested enzymes for samples with the lowest percentage of quince fruit. Both collagen types exhibited the highest activity in the inhibition assay against acetylcholinesterase and butyrylcholinesterase when combined with 3 g and 4 g of quince. Overall, the experimental incorporation of both fruit and collagen enhanced the chocolates' activity. Similarly to the antioxidant activity findings, chocolates with lower quince fruit quantities showed increased activity when supplemented with collagen III, while those with higher quince content (3 g and 4 g) displayed higher activity with collagen I. Bitter chocolate by itself is an attractive food product, rich in many bioactive compounds. However, enriching it with other attractive raw materials can make its properties and taste even more attractive.


Subject(s)
Antioxidants , Chocolate , Rosaceae , Chocolate/analysis , Antioxidants/pharmacology , Animals , Rosaceae/chemistry , Collagen , Inflammation/prevention & control , Fruit/chemistry , Swine , Oxidation-Reduction/drug effects
17.
Antioxidants (Basel) ; 13(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38929071

ABSTRACT

Breast cancer presents a significant global health challenge with rising incidence rates worldwide. Despite current efforts, it remains inadequately controlled. Functional foods, notably tempeh, have emerged as promising candidates for breast cancer prevention and treatment due to bioactive peptides and isoflavones exhibiting potential anticancer properties by serving as antioxidants, inducing apoptosis, and inhibiting cancer cell proliferation. This study integrates pharmacoinformatics and cellular investigations (i.e., a multifaceted approach) to elucidate the antioxidative and anti-breast cancer properties of tempeh-derived isoflavones. Methodologies encompass metabolomic profiling, in silico analysis, antioxidant assays, and in vitro experiments. Daidzein and genistein exhibited potential therapeutic options for breast cancer treatment and as antioxidant agents. In vitro studies also supported their efficacy against breast cancer and their ability to scavenge radicals, particularly in soy-based tempeh powder (SBT-P) and its isoflavone derivatives. Results have demonstrated a significant downregulation of breast cancer signaling proteins and increased expression of miR-7-5p, a microRNA with tumor-suppressive properties. Notably, the LD50 values of SBT-P and its derivatives on normal breast cell lines indicate their potential safety, with minimal cytotoxic effects on MCF-10A cells compared to control groups. The study underscores the favorable potential of SBT-P as a safe therapeutic option for breast cancer treatment, warranting further clinical exploration.

19.
Curr Issues Mol Biol ; 46(6): 5845-5865, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921020

ABSTRACT

Sickle cell anemia (SCA), the most common form of sickle cell disease (SCD), is a genetic blood disorder. Red blood cells break down prematurely, causing anemia and often blocking blood vessels, leading to chronic pain, organ damage, and increased infection risk. SCD arises from a single-nucleotide mutation in the ß-globin gene, substituting glutamic acid with valine in the ß-globin chain. This review examines treatments evaluated through randomized controlled trials for managing SCD, analyzes the potential of functional foods (dietary components with health benefits) as a complementary strategy, and explores the use of bioactive compounds as functional food ingredients. While randomized trials show promise for certain drugs, functional foods enriched with bioactive compounds also hold therapeutic potential. Further research is needed to confirm clinical efficacy, optimal dosages, and specific effects of these compounds on SCD, potentially offering a cost-effective and accessible approach to managing the disease.

20.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931235

ABSTRACT

Stroke is the world's second-leading cause of death. Current treatments for cerebral edema following intracerebral hemorrhage (ICH) mainly involve hyperosmolar fluids, but this approach is often inadequate. Propolis, known for its various beneficial properties, especially antioxidant and anti-inflammatory properties, could potentially act as an adjunctive therapy and help alleviate stroke-associated injuries. The chemical composition of Geniotrigona thoracica propolis extract was analyzed by GC-MS after derivatization for its total phenolic and total flavonoid content. The total phenolic content and total flavonoid content of the propolis extract were 1037.31 ± 24.10 µg GAE/mL and 374.02 ± 3.36 µg QE/mL, respectively. By GC-MS analysis, its major constituents were found to be triterpenoids (22.4% of TIC). Minor compounds, such as phenolic lipids (6.7% of TIC, GC-MS) and diterpenic acids (2.3% of TIC, GC-MS), were also found. Ninety-six Sprague Dawley rats were divided into six groups; namely, the control group, the ICH group, and four ICH groups that received the following therapies: mannitol, propolis extract (daily oral propolis administration after the ICH induction), propolis-M (propolis and mannitol), and propolis-B+A (daily oral propolis administration 7 days prior to and 72 h after the ICH induction). Neurocognitive functions of the rats were analyzed using the rotarod challenge and Morris water maze. In addition, the expression of NF-κB, SUR1-TRPM4, MMP-9, and Aquaporin-4 was analyzed using immunohistochemical methods. A TUNEL assay was used to assess the percentage of apoptotic cells. Mannitol significantly improved cognitive-motor functions in the ICH group, evidenced by improved rotarod and Morris water maze completion times, and lowered SUR-1 and Aquaporin-4 levels. It also significantly decreased cerebral edema by day 3. Similarly, propolis treatments (propolis-A and propolis-B+A) showed comparable improvements in these tests and reduced edema. Moreover, combining propolis with mannitol (propolis-M) further enhanced these effects, particularly in reducing edema and the Virchow-Robin space. These findings highlight the potential of propolis from the Indonesian stingless bee, Geniotrigona thoracica, from the Central Tapanuli region as a neuroprotective, adjunctive therapy.


Subject(s)
Cerebral Hemorrhage , Disease Models, Animal , Neuroprotective Agents , Propolis , Rats, Sprague-Dawley , Animals , Propolis/pharmacology , Propolis/chemistry , Neuroprotective Agents/pharmacology , Cerebral Hemorrhage/drug therapy , Bees , Rats , Male , Flavonoids/pharmacology , Flavonoids/analysis , Antioxidants/pharmacology , Brain Edema/drug therapy , Gas Chromatography-Mass Spectrometry , Phenols/pharmacology , Phenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...