Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Ther Deliv ; : 1-17, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101438

ABSTRACT

Aim: This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration. Method: Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake. Results: The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation. Conclusion: The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.


[Box: see text].

2.
Clin Interv Aging ; 19: 1393-1405, 2024.
Article in English | MEDLINE | ID: mdl-39099749

ABSTRACT

Infectious keratitis (IK) represents a significant global health concern, ranking as the fifth leading cause of blindness worldwide despite being largely preventable and treatable. Elderly populations are particularly susceptible due to age-related changes in immune response and corneal structure. However, research on IK in this demographic remains scarce. Age-related alterations such as increased permeability and reduced endothelial cell density further compound susceptibility to infection and hinder healing mechanisms. Additionally, inflammaging, characterized by chronic inflammation that develops with advanced age, disrupts the ocular immune balance, potentially exacerbating IK and other age-related eye diseases. Understanding these mechanisms is paramount for enhancing IK management, especially in elderly patients. This review comprehensively assesses risk factors, clinical characteristics, and management strategies for bacterial, viral, fungal, and acanthamoeba keratitis in the elderly population, offering crucial insights for effective intervention.


Subject(s)
Keratitis , Humans , Keratitis/drug therapy , Aged , Risk Factors , Aging , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/therapy , Cornea
3.
Article in English | MEDLINE | ID: mdl-38957959

ABSTRACT

Objective: The purpose of this study was to report a case of herpes simplex virus-1 (HSV-1) keratitis misdiagnosed as fungal keratitis due to its clinical presentation being similar to that of fungal keratitis, ultimately diagnosed by NGS. Patients and Methods: A 59-year-old male presented with reduced vision in the right eye, combined with a history of trauma with vegetative matter. The corneal ulcer was accompanied with feathery infiltration, satellite lesion, and endothelial plaques. In vivo confocal microscopy (IVCM) showed hyper-reflective linear, thin, and branching interlocking structures. Fungal keratitis was diagnosed. Voriconazole 100 mg orally daily, topical tobramycin and 1% voriconazole were initiated empirically right away. The condition was aggravated and penetrating keratoplasty was performed. Anterior segment optical coherence tomography (AS-OCT) demonstrated the presence of plaques with a clear boundary between plaques and endothelium, resembling the AS-OCT images observed in cases of viral keratitis. Next-generation sequencing (NGS) further detected HSV-1 deoxyribonucleic acid, and no fungal component was found. Antifungal agents were discontinued and antiviral treatments were added. Results: We successfully treated a patient with HSV-1 keratitis who was misdiagnosed due to clinical features and IVCM findings similar to fungal keratitis. The patient's infection was controlled. At 2 years after surgery, the cornea recovered well. Conclusions: HSV-1 keratitis with atypical clinical presentation can be easily misdiagnosed. This case report emphasizes the importance of NGS in diagnosing the pathogens of keratitis.

4.
ACS Infect Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083647

ABSTRACT

Purpose: to explore the anti-inflammatory effects of a nanobody (Nb) specific to ß-glucan on fungal keratitis (FK). Methods: in order to verify the therapeutic and anti-inflammatory efficacy of Nb in FK, the severity of inflammation was assessed with inflammatory scores, hematoxylin-eosin (HE) staining, and myeloperoxidase (MPO) assays. In corneas of mice of FK model and human corneal epithelial cells stimulated by fungal hyphae, real-time reverse transcriptase polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were used to detect the expression levels of inflammatory cytokines and pattern recognition receptors (PRRs). In vivo, macrophages and neutrophils infiltration in the cornea stroma was detected by immunofluorescence (IFS) staining. Results: In murine models infected with Aspergillus fumigatus (A. fumigatus), Nb treatment could reduce the inflammatory scores. HE staining and MPO results showed Nb significantly alleviated corneal edema and reduced inflammatory cell infiltration 3 days post-infection. In addition, the expression levels of LOX-1 and Dectin-1 were significantly decreased in the Nb group in vivo. The expression of chemokines CCL2 and CXCL2 also decreased in the Nb group. Compared with the PBS group, the number of macrophages and neutrophils in the Nb group was significantly decreased, which was shown in IFS results. Moreover, Nb attenuated the expression of Dectin-1, LOX-1, and inflammatory mediators, including IL-6 and IL-8 in vitro. Conclusion: our study showed that Nb could alleviate FK by downregulating the expression of PRRs and inflammatory factors as well as reducing the infiltration of macrophages and neutrophils.

5.
Diagn Microbiol Infect Dis ; 110(1): 116442, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024935

ABSTRACT

BACKGROUND: Keratomycosis is a form of infectious keratitis, an infection of the cornea, which is caused by fungi. This disease is a leading cause of ocular morbidity globally with at least 60 % of the affected individuals becoming monocularly blind. OBJECTIVE: This bibliometric analysis aimed to comprehensively assess the existing body of literature, providing insights of the evolution of keratomycosis research by identifying key themes and research gaps. METHODS: This work used the modeling method Latent Dirichlet Allocation (LDA) to identify and interpret scientific information on topics concerning existing categories in a set of documents. The HJ-Biplot method was also used to determine the relationship between the analyzed topics, taking into consideration the years under study. RESULTS: This bibliometric analysis was performed on a total of 2,599 scientific articles published between 1992 and 2022. The five leading countries with more scientific production and citations on keratomycosis were The United States of America, followed by India, China, United Kingdom and Australia. The top five topics studied were Case Reports and Corneal Infections, which exhibited a decreasing trend; followed by Penetrating Keratoplasty and Corneal Surgery, Ocular Effects of Antifungal Drugs, Gene Expression and Inflammatory Response in the Cornea and Patient Data which have been increasing throughout the years. However Filamentous Fungi and Specific Pathogens, and Antifungal Therapies research has been decreasing in trend. CONCLUSION: Additional investigation into innovative antifungal drug therapies is crucial for proactively tackling the potential future resistance to antifungal agents in scientific writing.


Subject(s)
Bibliometrics , Eye Infections, Fungal , Keratitis , Humans , Keratitis/microbiology , Eye Infections, Fungal/microbiology , Antifungal Agents/therapeutic use , Global Health , Fungi/classification , Fungi/isolation & purification , Cornea/microbiology
6.
Cureus ; 16(6): e62682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036143

ABSTRACT

Fungal keratitis, or keratomycosis, is an infection of the cornea caused by fungi. Although it is less frequently implicated in ocular infections than bacterial keratitis, its prognosis remains more guarded. However, the fungi involved include a variety of rare fungal species. Fungal keratitis caused by C. tropicalis has been reported only rarely in the literature. We report the first case of Candida tropicalis corneal abscess diagnosed in the Parasitology-Mycology Department of the Hassan II University Hospital in Fez: a 66-year-old patient with corneal dystrophy was admitted to the Ophthalmology Department for management of a corneal abscess of the left eye. Fungal infection was confirmed by mycological study of the corneal scrapings. The patient was put on antifungal treatment with good clinical improvement.

7.
ACS Infect Dis ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990785

ABSTRACT

Fungal keratitis (FK) is a leading cause of preventable blindness and eye loss. The poor antifungal activity, increased drug resistance, limited corneal permeability, and unsatisfactory biosafety of conventional antifungal eye drops are among the majority of the challenges that need to be addressed for currently available antifungal drugs. Herein, this study proposes an effective strategy that employs chitosan-poly(ethylene glycol)-LK13 peptide conjugate (CPL) in the treatment of FK. Nanoassembly CPL can permeate the lipophilic corneal epithelium in the transcellular route, and its hydrophilicity surface is a feature to drive its permeability through hydrophilic stroma. When encountering fungal cell membrane, CPL dissembles and exposes the antimicrobial peptide (LK13) to destroy fungal cell membranes, the minimum inhibitory concentration values of CPL against Fusarium solani (F. solani) are always not to exceed 8 µg peptide/mL before and after drug resistance induction. In a rat model of Fusarium keratitis, CPL demonstrates superior therapeutic efficacy than commercially available natamycin ophthalmic suspension. This study provides more theoretical and experimental supports for the application of CPL in the treatment of FK.

8.
J Am Vet Med Assoc ; : 1-9, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991540

ABSTRACT

Equine fungal keratitis represents a substantial portion of keratitis cases in horses, with fungal involvement identified in approximately half of all infectious keratitis cases. Despite its prevalence, more comprehensive retrospective analyses are needed to better understand this condition. Outcomes vary, with approximately two-thirds of cases achieving complete healing with retained vision, although enucleation is often necessary. Predominant pathogens include Aspergillus and Fusarium, with yeast reported in a minority of cases. Resistance to common antifungal agents among filamentous fungi poses a significant challenge. Advances in diagnostics, including repeat culture and antifungal susceptibility testing, as well as the incorporation of PCR technology, hold promise for improving detection and guiding treatment decisions. Newer antifungals, combination therapies, and innovative modalities such as photodynamic therapy offer hope for improved outcomes. Continued research efforts are essential to further elucidate the epidemiology, pathogenesis, and optimal management strategies for this condition.

9.
Arch Microbiol ; 206(8): 358, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033220

ABSTRACT

Fungal keratitis is a severe corneal infection characterized by suppurative and ulcerative lesions. Aspergillus fumigatus is a common cause of fungal keratitis. Antifungal drugs, such as natamycin, are currently the first-line treatment for fungal keratitis, but their ineffectiveness leads to blindness and perforation. Additionally, the development of fungal resistance makes treating fungal keratitis significantly more challenging. The present study used platelet-derived biomaterial (PDB) to manage A. fumigatus keratitis in the animal model. Freezing and thawing processes were used to prepare PDB, and then A. fumigatus keratitis was induced in the mice. Topical administration of PDB, natamycin, and plasma was performed; quantitative real-time PCR (qPCR) and histopathologic examination (HE) were used to assess the inhibitory effect of the mentioned compounds against fungal keratitis. The qPCR results showed that PDB significantly decreased the count of A. fumigatus compared to the control group (P-value ≤ 5). Natamycin also remarkably reduced the count of fungi in comparison to the untreated animal, but its inhibitory effect was not better than PDB (P-value > 5). The findings of HE also demonstrated that treatment with PDB and natamycin decreased the fungal loads in the corneal tissue. However, plasma did not show a significant inhibitory effect against A. fumigatus. PDB is intrinsically safe and free of any infections or allergic responses; additionally, this compound has a potential role in decreasing the burden of A. fumigatus and treating fungal keratitis. Therefore, scientists should consider PDB an applicable approach to managing fungal keratitis and an alternative to conventional antifungal agents.


Subject(s)
Antifungal Agents , Aspergillosis , Aspergillus fumigatus , Keratitis , Aspergillus fumigatus/drug effects , Animals , Keratitis/microbiology , Keratitis/drug therapy , Mice , Aspergillosis/drug therapy , Aspergillosis/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Disease Models, Animal , Biocompatible Materials , Blood Platelets/drug effects , Natamycin/pharmacology , Natamycin/administration & dosage , Natamycin/therapeutic use , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Cornea/microbiology , Cornea/pathology , Cornea/drug effects
10.
Ann Clin Microbiol Antimicrob ; 23(1): 64, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026348

ABSTRACT

BACKGROUND: Infectious keratitis, a significant contributor to blindness, with fungal keratitis accounting for nearly half of cases, poses a formidable diagnostic and therapeutic challenge due to its delayed clinical presentation, prolonged culture times, and the limited availability of effective antifungal medications. Furthermore, infections caused by rare fungal strains warrant equal attention in the management of this condition. CASE PRESENTATION: A case of fungal keratitis was presented, where corneal scraping material culture yielded pink colonies. Lactophenol cotton blue staining revealed distinctive spore formation consistent with the Fusarium species. Further analysis using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) identified the causative agent as Fusarium proliferatum. However, definitive diagnosis of Pseudonectria foliicola infection was confirmed through ITS sequencing. The patient's recovery was achieved with a combination therapy of voriconazole eye drops and itraconazole systemic treatment. CONCLUSION: Pseudonectria foliicola is a plant pathogenic bacterium that has never been reported in human infections before. Therefore, ophthalmologists should consider Pseudonectria foliicola as a possible cause of fungal keratitis, as early identification and timely treatment can help improve vision in most eyes.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusarium , Keratitis , Voriconazole , Humans , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/diagnosis , Antifungal Agents/therapeutic use , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/diagnosis , Voriconazole/therapeutic use , Fusarium/isolation & purification , Fusarium/drug effects , Fusarium/pathogenicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Itraconazole/therapeutic use , Fusariosis/drug therapy , Fusariosis/microbiology , Fusariosis/diagnosis , Male , Cornea/microbiology , Cornea/pathology , Female , Middle Aged
11.
ACS Infect Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900967

ABSTRACT

Fungal keratitis (FK) is a severe corneal condition caused by pathogenic fungi and is associated with the virulence of fungi and an excessive tissue inflammatory response. Progranulin (PGRN), functioning as a multifunctional growth factor, exerts a pivotal influence on the regulation of inflammation and autophagy. The aim of our research was to analyze the role of PGRN in Aspergillus fumigatus (A. fumigatus) keratitis. We found that PGRN expression was increased in the mouse cornea with A. fumigatus keratitis. In our experiments, corneas of mice with FK were treated with 100 ng/mL of PGRN. In vitro, RAW 264.7 cells were treated with 10 ng/mL of PGRN before A. fumigatus stimulation. The findings suggested that PGRN effectively alleviated corneal edema and decreased the expression of pro-inflammatory cytokines in mice. In stimulated RAW 264.7 cells, PGRN treatment suppressed the expression of pro-inflammatory cytokines IL-6 and TNF-α but promoted the expression of the anti-inflammatory cytokines IL-10. PGRN treatment significantly upregulated the expression of autophagy-related proteins LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, autophagy inhibitor) reversed the regulation of inflammatory cytokines by PGRN. In addition, our study demonstrated that PGRN also enhanced phagocytosis in RAW 264.7 cells. In summary, PGRN attenuated the inflammatory response of A. fumigatus keratitis by increasing autophagy and enhanced the phagocytic activity of RAW 264.7 cells. This showed that PGRN had a protective effect on A. fumigatus keratitis.

12.
Diagn Microbiol Infect Dis ; 110(1): 116369, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909427

ABSTRACT

A 32-year-old contact lens-wearing man with recent travel history to the Caribbean was referred for a corneal infiltrate in the left eye that worsened following 1-week of steroid-antibiotic therapy. Corneal cultures were obtained and sent to our facility's clinical microbiology laboratory for analysis. Same-day in vivo confocal microscopy revealed fungal elements. Nucleic acid sequencing performed on the isolated determined it to be a member of the entomopathogenic genus Metarhizium. Over the course of 3 months, the patient's corneal infiltrate ultimately resolved following topical natamycin 5 % therapy. This is the first reported case to have originated in the Caribbean and to utilize in vivo confocal microscopy to aid diagnosis. Our case also supports previous reports of success with natamycin therapy in treatment of Metarhizium sp. keratitis.


Subject(s)
Antifungal Agents , Keratitis , Metarhizium , Microscopy, Confocal , Natamycin , Humans , Natamycin/therapeutic use , Natamycin/administration & dosage , Male , Metarhizium/genetics , Metarhizium/isolation & purification , Adult , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/diagnosis , Antifungal Agents/therapeutic use , Caribbean Region , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/diagnosis , Treatment Outcome , Administration, Topical , Cornea/microbiology , Cornea/pathology
13.
ACS Infect Dis ; 10(7): 2356-2380, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38847789

ABSTRACT

Fungal keratitis (FK) is a severe ocular condition resulting from corneal infection that is prevalent in tropical countries, particularly in developing regions of Asia and Africa. Factors like corneal lens misuse, inappropriate steroid use, and diagnostic challenges have provoked the epidemic. FK causes significant vision impairment, scarring, and ocular deformities. Accurate pathological diagnosis is crucial for effective therapeutic intervention. Topical antifungal therapy with surface healing medications proves effective in preventing fungal-borne ulcers. Managing FK requires a comprehensive understanding of fungal pathogenesis, guiding formulation strategies and preventive measures to curb global ocular blindness. This review provides in-depth insights into FK, covering etiology, epidemiology, pathogenesis, therapeutic interventions, antifungal resistance, limitations, prevention, and future perspectives on ocular surface disease management.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Keratitis , Humans , Keratitis/diagnosis , Keratitis/epidemiology , Keratitis/microbiology , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Antifungal Agents/therapeutic use , Drug Resistance, Fungal
14.
Pak J Med Sci ; 40(5): 974-978, 2024.
Article in English | MEDLINE | ID: mdl-38827873

ABSTRACT

Objectives: To investigate the clinical efficacy of cyclosporin (CYSP) and natamycin (NAT) as a combination therapy in patients with fungal keratitis. Methods: This is a retrospective study. A total of 64 patients (64 eyes) with fungal keratitis treated by Baoding No.1 Central Hospital between December 2018 and May 2022 according to their treatment methods were divided into a monotherapy (MT) group receiving NAT eye drops solely and a combination therapy (CT) group given CYSP eye drops in addition to the exact treatment provided for the MT group. The clinical responses, visual acuity changes, severity of eye symptoms, and adverse reactions were compared between the two groups. Results: At two and four weeks post-treatment, the CT group had an overall response rate (ORR) significantly higher than that of the MT group (P< 0.05, respectively); both groups showed improved visual acuity and eye symptoms compared with the pre-treatment condition, and these improvements were more pronounced in the CT group (P < 0.05, respectively). Compared with the MT group, the CT group experienced a significantly shorter duration of eye symptoms (P < 0.05). The adverse reaction rate(ARR) was 9.38% in the CT group and 6.25% in the MT group, and the difference was not significant (P > 0.05). Conclusion: Using CYSP and NAT as a combination therapy for fungal keratitis can substantially heighten the therapeutic effects, promote visual acuity recovery, and induce rapid remission of eye symptoms without increasing the risk of adverse reactions.

15.
Pharm Nanotechnol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797907

ABSTRACT

Keratomycosis, also termed fungal keratitis (FK), is an invasive eye condition for which there is a lack of available effective treatment due to pharmacological shortages and vital ocular obstacles. This severe corneal infection typically suppurates and eventually ulcerates, ultimately causing blindness or decreased vision. According to epidemiological studies, FK is more common in warm, humid places with an agricultural economy. The use of nanoemulsion carriers for ocular fungal infection has been promoting better treatment and patient compliance. The persistent fungal infection like FK, affecting particularly the stroma heralds complications thereby posing difficulty in diagnosis and treatment. To help treat refractory cases and improve outcomes, recently targeted drug delivery techniques and novel antifungal drugs shall be explored. A delay in diagnosis may cause corneal fungal infections to have irreversible consequences, which cannot be avoided. However, infections can develop into ocular perforation even after receiving intense care. The commonly used chemotherapy for FK is based on topical (natamycin 5% is typically first-line therapy) and systemic administration of azole drugs. To address the problems related to better treatment, various nanoemulsion carriers were discussed. Novel drug delivery systems based on nanoemulsions are a viable therapeutic option for treating keratomycosis and may be a candidate method for overcoming obstacles in the treatment of many other ocular illnesses when combined with different hydrophobic medicines. With a brief explanation of the pathogenesis, this article seeks to give readers a thorough analysis of current trends, various treatment choices, and care strategies for fungal keratitis.

16.
Redox Biol ; 73: 103206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796864

ABSTRACT

Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1ß, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.


Subject(s)
Anti-Inflammatory Agents , Antifungal Agents , Azoles , Isoindoles , Keratitis , Organoselenium Compounds , Oxidative Stress , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Keratitis/drug therapy , Keratitis/microbiology , Mice , Oxidative Stress/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells , Antioxidants/pharmacology , Aspergillus fumigatus/drug effects , Aspergillosis/drug therapy , Aspergillosis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Disease Models, Animal
17.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792749

ABSTRACT

This study aims to report the efficacy of a combined intrastromal injection in optimizing the outcome of severe mycotic keratitis. Herein, we report a case series of 20 consecutive patients with positive fungal cultures not responding to topical antifungal treatment. Patients received cycles of intrastromal injections of voriconazole (50 µg/0.1 mL) and amphotericin B (2.5 µg/0.1 mL); all patients continued their topical antifungal therapy. The organisms isolated were Fusarium (n = 5), Aspergillus (n = 4), Candida (n = 4), Rhodotorula (n = 2), Penicillium (n = 2), Alternaria (n = 1), Bipolaris (n = 1), and Curvularia (n = 1). The size of the infiltrate varied from 6.5 to 1.5 mm. At presentation, the best corrected visual acuity (BCVA, namely, the best visual acuity achieved with glasses, if needed) was less than 20/400 in all patients, improving to better than 20/400 in eleven patients. Seven patients required surgical intervention; four of them underwent penetrating keratoplasty (PK) à chaud one month after the first intrastromal injection. Patients who underwent surgery achieved a BCVA of 20/40 or better. Combined intrastromal injections before therapeutic penetrating keratoplasty (TPK) effectively reduced ulcer size and graft diameter, preventing infection recurrence. Our results highlight the efficacy of combined intrastromal injections in optimizing outcomes for severe mycotic keratitis undergoing TPK.

18.
Mycoses ; 67(5): e13728, 2024 May.
Article in English | MEDLINE | ID: mdl-38695201

ABSTRACT

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
19.
Exp Eye Res ; 244: 109944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797260

ABSTRACT

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Autophagy , Cinnamates , Depsides , Eye Infections, Fungal , Macrophages , Reactive Oxygen Species , Rosmarinic Acid , Depsides/pharmacology , Animals , Autophagy/drug effects , Mice , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillosis/metabolism , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cinnamates/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Disease Models, Animal , RAW 264.7 Cells , Cytokines/metabolism , Phagocytosis/drug effects
20.
Int J Pharm ; 656: 124118, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615806

ABSTRACT

Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.


Subject(s)
Antifungal Agents , Cornea , Drug Liberation , Eye Infections, Fungal , Keratitis , Micelles , Nanoparticles , Natamycin , Natamycin/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Keratitis/drug therapy , Keratitis/microbiology , Animals , Cornea/microbiology , Cornea/metabolism , Cornea/drug effects , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Rabbits , Solubility , Delayed-Action Preparations , Tears/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...