Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 688
Filter
1.
Int J Food Microbiol ; 422: 110821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38970998

ABSTRACT

Fusarium graminearum is a destructive fungal pathogen that seriously threatens wheat production and quality. In the management of fungal infections, biological control is an environmentally friendly and sustainable approach. Here, the antagonistic strain ZK-9 with a broad antifungal activity was identified as Bacillus amyloliquefaciens. ZK-9 could produce extracellular enzymes such as pectinase, protease, cellulase, and amylase, as well as plant growth-promoting substances including IAA and siderophore. Lipopeptides extracted from strain ZK-9 had the high inhibitory effects on the mycelia of F. graminearum with the minimum inhibitory concentration (MIC) of 0.8 mg/mL. Investigation on the action mechanism of lipopeptides showed they could change the morphology of mycelia, damage the cell membrane, lower the content of ergosterol and increase the relative conductivity of membrane, cause nucleic acid and proteins leaking out from the cells, and disrupt the cell membrane permeability. Furthermore, metabolomic analysis of F. graminearum revealed the significant differences in the expression of 100 metabolites between the lipopeptides treatment group and the control group, which were associated with various metabolic pathways, mainly including amino acid biosynthesis, pentose, glucuronate and glycerophospholipid metabolism. In addition, strain ZK-9 inhibited Fusarium crown rot (FCR) with a biocontrol efficacy of 82.14 % and increased the plant height and root length by 24.23 % and 93.25 %, respectively. Moreover, the field control efficacy of strain ZK-9 on Fusarium head blight (FHB) was 71.76 %, and the DON content in wheat grains was significantly reduced by 69.9 %. This study puts valuable insights into the antifungal mechanism of lipopeptides against F. graminearum, and provides a promising biocontrol agent for controlling F. graminearum.

2.
Plant Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902883

ABSTRACT

The Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2-(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 µg/mL, with an average EC50 of 0.78 µg/mL. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth, and pathogenicity were reduced compared to their parental isolates, and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS, and H2O2, while their tolerance of high concentration of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (p < 0.05) reduced compared to their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.

3.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879328

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Subject(s)
Beauveria , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/physiology , Animals , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spodoptera/microbiology , Spores, Fungal , Larva/microbiology , Serine Proteases/metabolism , Serine Proteases/genetics , Pest Control, Biological , Fusarium/pathogenicity , Fusarium/genetics
4.
J Agric Food Chem ; 72(27): 15176-15189, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38943677

ABSTRACT

Fusarium head blight caused by Fusarium graminearum is a devastating disease in wheat that seriously endangers food security and human health. Previous studies have found that the secondary metabolite phenazine-1-carboxamide produced by biocontrol bacteria inhibited F. graminearum by binding to and inhibiting the activity of histone acetyltransferase Gcn5 (FgGcn5). However, the detailed mechanism of this inhibition remains unknown. Our structural and biochemical studies revealed that phenazine-1-carboxamide (PCN) binds to the histone acetyltransferase (HAT) domain of FgGcn5 at its cosubstrate acetyl-CoA binding site, thus competitively inhibiting the histone acetylation function of the enzyme. Alanine substitution of the residues in the binding site shared by PCN and acetyl-CoA not only decreased the histone acetylation level of the enzyme but also dramatically impacted the development, mycotoxin synthesis, and virulence of the strain. Taken together, our study elucidated a competitive inhibition mechanism of Fusarium fungus by PCN and provided a structural template for designing more potent phenazine-based fungicides.


Subject(s)
Fungal Proteins , Fungicides, Industrial , Fusarium , Histone Acetyltransferases , Phenazines , Plant Diseases , Triticum , Fusarium/metabolism , Fusarium/drug effects , Fusarium/genetics , Phenazines/metabolism , Phenazines/pharmacology , Phenazines/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Plant Diseases/microbiology , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/antagonists & inhibitors , Triticum/microbiology , Binding Sites , Acetylation
5.
Pest Manag Sci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843449

ABSTRACT

BACKGROUND: Fusarium head blight (FHB) caused by Fusarium graminearum species complex (FGSG) remains a major challenge to cereal crops and resistance to key fungicides by the pathogen threatens control efficacy. Pydiflumetofen, a succinate dehydrogenase inhibitor, and phenamacril, a cyanoacrylate fungicide targeting myosin I, have been applied to combat this disease. Nonetheless, emergence of pydiflumetofen resistance in a subset of field isolates alongside laboratory-induced facile generation of phenamacril-resistant isolates signals a critical danger of resistance proliferation. RESULTS: Our study investigates the development of dual resistance to these fungicides in F. graminearum. Utilizing pydiflumetofen-resistant (PyR) and -sensitive (PyS) isolates, we obtained dual-resistant (PyRPhR) and phenamacril-resistant (PySPhR) mutants on potato sucrose agar containing phenamacril. Mutation rates for phenamacril resistance were comparable between pydiflumetofen-resistant and -sensitive isolates, implying independent pathways for resistance development. The mutants compromised in fungal growth, competitive viability and deoxynivalenol production, suggesting fitness penalties for the dual-resistant mutants. However, no cross-resistance was found with tebuconazole or fludioxonil. In addition, we characterized four critical amino acid changes (S217L, C423R, K537T, E420G) in the Myo1 that were verified to confer phenamacril resistance in F. graminearum. CONCLUSION: This research indicates the possibility of resistance development for both pydiflumetofen and phenamacril in F. graminearum and emphasizes the need for fungicide resistance management for FHB. © 2024 Society of Chemical Industry.

6.
Mol Plant Pathol ; 25(6): e13485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877764

ABSTRACT

Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.


Subject(s)
Cell Wall , Fusarium , Plant Diseases , Trichothecenes , Triticum , Trichothecenes/metabolism , Fusarium/pathogenicity , Fusarium/metabolism , Triticum/microbiology , Plant Diseases/microbiology , Cell Wall/metabolism , Cell Wall/drug effects , Plasmodesmata/metabolism , Mycotoxins/metabolism
7.
mBio ; : e0135124, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860787

ABSTRACT

Plant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity. Consequently, we found a soil-borne microbe Brevibacillus brevis HK544 strain exhibiting a respiration inhibitory activity and identified edeine B1 (EB1) from the culture filtrate of HK544 as the active compound of the respiration inhibition activity. Furthermore, against a plant pathogenic fungus Fusarium graminearum, our results showed that EB1 has effects on multiple aspects of respiration with the downregulation of most of the mitochondrial-related genes based on transcriptome analysis, differential EB1-sensitivity from targeted mutagenesis, and the synergistic effects of EB1 with electron transport chain complex inhibitors. With the promising plant disease control efficacy of B. brevis HK544 producing EB1, our results suggest that B. brevis HK544 has potential as a biocontrol agent for Fusarium head blight.IMPORTANCEAs a necrotrophic fungus, Fusarium graminearum is a highly destructive pathogen causing severe diseases in cereal crops and mycotoxin contamination in grains. Although chemical control is considered the primary approach to control plant disease caused by F. graminearum, fungicide-resistant strains have been detected in the field after long-term continuous application of fungicides. Moreover, applying chemical fungicides that trigger mycotoxin biosynthesis is a great concern for many researchers. Biocontrol of Fusarium head blight (FHB) by biological control agents (BCAs) represents an alternative approach and could be used as part of the integrated management of FHB and mycotoxin production. The most extensive studies on bacterial BCAs-fungal communications in agroecosystems have focused on antibiosis. Although many BCAs in agricultural ecology have already been used for fungal disease control, the molecular mechanisms of antibiotics produced by BCAs remain to be elucidated. Here, we found a potential BCA (Brevibacillus brevis HK544) with a strong antifungal activity based on the respiration inhibition activity with its active compound edeine B1 (EB1). Furthermore, our results showed that EB1 secreted by HK544 suppresses the expression of the mitochondria-related genes of F. graminearum, subsequently suppressing fungal development and the virulence of F. graminearum. In addition, EB1 exhibited a synergism with complex I inhibitors such as rotenone and fenazaquin. Our work extends our understanding of how B. brevis HK544 exhibits antifungal activity and suggests that the B. brevis HK544 strain could be a valuable source for developing new crop protectants to control F. graminearum.

8.
Fungal Genet Biol ; 173: 103899, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38802054

ABSTRACT

Fusarium head blight is a devastating disease that causes severe yield loses and mycotoxin contamination in wheat grain. Additionally, balancing the trade-off between wheat production and disease resistance has proved challenging. This study aimed to expand the genetic tools of the endophyte Phomopsis liquidambaris against Fusarium graminearum. Specifically, we engineered a UDP-glucosyltransferase-expressing P. liquidambaris strain (PL-UGT) using ADE1 as a selection marker and obtained a deletion mutant using an inducible promoter that drives Cas9 expression. Our PL-UGT strain converted deoxynivalenol (DON) into DON-3-G in vitro at a rate of 71.4 % after 36 h. DON inactivation can be used to confer tolerance in planta. Wheat seedlings inoculated with endophytic strain PL-UGT showed improved growth compared with those inoculated with wildtype P. liquidambaris. Strain PL-UGT inhibited the growth of Fusarium graminearum and reduced infection rate to 15.7 %. Consistent with this finding, DON levels in wheat grains decreased from 14.25 to 0.56 µg/g when the flowers were pre-inoculated with PL-UGT and then infected with F. graminearum. The expression of UGT in P. liquidambaris was nontoxic and did not inhibit plant growth. Endophytes do not enter the seeds nor induce plant disease, thereby representing a novel approach to fungal disease control.

9.
Int J Biol Macromol ; 268(Pt 2): 131938, 2024 May.
Article in English | MEDLINE | ID: mdl-38692539

ABSTRACT

ING proteins display a high level of evolutionary conservation across various species, and play a crucial role in modulating histone acetylation levels, thus regulating various important biological processes in yeast and humans. Filamentous fungi possess distinct biological characteristics that differentiate them from yeasts and humans, and the specific roles of ING proteins in filamentous fungi remain largely unexplored. In this study, an ING protein, Fng2, orthologous to the yeast Pho23, has been identified in the wheat head blight fungus Fusarium graminearum. The deletion of the FNG2 gene resulted in defects in vegetative growth, conidiation, sexual reproduction, plant infection, and deoxynivalenol (DON) biosynthesis. Acting as a global regulator, Fng2 exerts negative control over histone H4 acetylation and governs the expression of over 4000 genes. Moreover, almost half of the differentially expressed genes in the fng3 mutant were found to be co-regulated by Fng2, emphasizing the functional association between these two ING proteins. Notably, the fng2 fng3 double mutant exhibits significantly increased H4 acetylation and severe defects in both fungal development and pathogenesis. Furthermore, Fng2 localizes within the nucleus and associates with the FgRpd3 histone deacetylase (HDAC) to modulate gene expression. Overall, Fng2's interaction with FgRpd3, along with its functional association with Fng3, underscores its crucial involvement in governing gene expression, thereby significantly influencing fungal growth, asexual and sexual development, pathogenicity, and secondary metabolism.


Subject(s)
Fungal Proteins , Fusarium , Gene Expression Regulation, Fungal , Histone Deacetylases , Plant Diseases , Triticum , Fusarium/pathogenicity , Fusarium/genetics , Triticum/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Acetylation , Plant Diseases/microbiology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histones/metabolism , Trichothecenes/metabolism , Mutation , Protein Binding
10.
Int J Biol Macromol ; 271(Pt 2): 132475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772456

ABSTRACT

In Arabidopsis and rice, the glycosyltransferase (GT) 43 family is involved in xylan synthesis. However, there have been limited reports on the study of the TaGT43 family in wheat. In this study, 28 TaGT43 family members were identified in wheat (Triticum aestivum L.) and clustered into three major groups based on the similarity of amino acid sequences. The results of the TaGT43 family's conserved motif and gene structure analyses agree with this result. Collinearity analysis revealed segmental duplications mainly promoted TaGT43 family expansion. cis-Acting element analysis revealed that the TaGT43 genes were involved in the light response, phytohormone response, abiotic/biotic stress response, and growth and development. The TaGT43 family showed a tissue-specific expression pattern, primarily expressed in roots and stems. Besides, the transcriptional and expression levels of multiple TaGT43 genes were upregulated during the infection of F. graminearum. According to metabolomics studies, F. graminearum infection affected the phenylpropanoid biosynthesis pathway in wheat, a critical factor in cell wall construction. Furthermore, GO enrichment analysis indicated that the TaGT43 genes play a significant role in cell wall organization. Based on these results, it may be concluded that the TaGT43 family mediates cell wall organization in response to F. graminearum infection.


Subject(s)
Fusarium , Gene Expression Regulation, Plant , Glycosyltransferases , Triticum , Triticum/genetics , Triticum/microbiology , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Multigene Family , Plant Diseases/microbiology , Plant Diseases/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling
11.
Appl Environ Microbiol ; 90(6): e0045524, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38809045

ABSTRACT

Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE: Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.


Subject(s)
Fusarium , Phenazines , Plant Diseases , Pseudomonas , Fusarium/physiology , Fusarium/growth & development , Pseudomonas/physiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Phenazines/metabolism , Siderophores/metabolism , Hydrogen Cyanide/metabolism , Antibiosis , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Pest Control, Biological , Biological Control Agents , Metabolomics , Soil Microbiology , Multiomics
12.
mBio ; 15(6): e0037724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38752738

ABSTRACT

Ascospores, forcibly released into the air from perithecia, are the primary inoculum for Fusarium head blight. In Fusarium graminearum, the biological functions of four RNA-dependent RNA polymerases (RdRPs) (Fgrdrp1-4) have been reported, but their regulatory mechanisms are poorly understood and the function of Fgrdrp5 is still unknown. In this study, we found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays an important role in ascospore discharge, and they all participate in the generation of turgor pressure in a polyol-dependent manner. Moreover, these three genes all affect the maturation of ascospores. Deep sequencing and co-analysis of small RNA and mRNA certified that Fgrdrp1, Fgrdrp2, and Fgrdrp5 partly share their functions in the biogenesis and accumulation of exonic small interference RNA (ex-siRNA), and these three RdRPs negatively regulate the expression levels of ex-siRNA corresponding genes, including certain genes associated with ascospore development or discharge. Furthermore, the differentially expressed genes of deletion mutants, those involved in lipid and sugar metabolism or transport as well as sexual development-related transcription factors, may also contribute to the defects in ascospore maturation or ascospore discharge. In conclusion, our study suggested that the components of the dicer-dependent ex-siRNA-mediated RNA interference pathway include at least Fgrdrp1, Fgrdrp2, and Fgrdrp5. IMPORTANCE: We found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays important roles in ascospore maturation and ascospore discharge of Fusarium graminearum. These three RNA-dependent RNA polymerases participate in the biogenesis and accumulation of exonic small interference RNA and then regulate ascospore discharge.


Subject(s)
Fusarium , Gene Expression Regulation, Fungal , RNA-Dependent RNA Polymerase , Spores, Fungal , Spores, Fungal/genetics , Spores, Fungal/growth & development , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Fusarium/genetics , Fusarium/enzymology , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
13.
Genomics ; 116(4): 110869, 2024 07.
Article in English | MEDLINE | ID: mdl-38797456

ABSTRACT

Fusarium graminearum is an economically important phytopathogenic fungus. Chemical control remains the dominant approach to managing this plant pathogen. In the present study, we performed a comparative transcriptome analysis to understand the effects of four commercially used fungicides on F. graminearum. The results revealed a significant number of differentially expressed genes related to carbohydrate, amino acid, and lipid metabolism, particularly in the carbendazim and phenamacril groups. Central carbon pathways, including the TCA and glyoxylate cycles, were found to play crucial roles across all treatments except tebuconazole. Weighted gene co-expression network analysis reinforced the pivotal role of central carbon pathways based on identified hub genes. Additionally, critical candidates associated with ATP-binding cassette transporters, heat shock proteins, and chitin synthases were identified. The crucial functions of the isocitrate lyase in F. graminearum were also validated. Overall, the study provided comprehensive insights into the mechanisms of how F. graminearum responds to fungicide stress.


Subject(s)
Fungal Proteins , Fungicides, Industrial , Fusarium , Transcriptome , Fusarium/genetics , Fusarium/metabolism , Fungicides, Industrial/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Isocitrate Lyase/genetics , Isocitrate Lyase/metabolism , Gene Expression Regulation, Fungal , Gene Expression Profiling
14.
Pathogens ; 13(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787224

ABSTRACT

Fusarium head blight (FHB) is a major threat to wheat crop production and food security worldwide. The creation of resistant wheat cultivars is an essential component of an integrated strategy against Fusarium graminearum, the primary aetiological agent that causes FHB. The results of this study show that the deployment of proto-cooperative interactions between wheat genotypes and mycoparasitic biocontrol agents (BCAs) can improve crop yield and plant resistance in controlling the devastating effects of FHB on wheat agronomic traits. A Fusarium-specific mycoparasite, Sphaerodes mycoparasitica, was found to be compatible with common and durum wheat hosts, thus allowing the efficient control of F. graminearum infection in plants. Four genotypes of wheat, two common wheat, and two durum wheat cultivars with varying FHB resistance levels were used in this greenhouse study. The BCA treatments decreased FHB symptoms in all four cultivars and improved the agronomic traits such as spike number, spike weight, seed weight, plant biomass, and plant height which are vital to grain yield. Conversely, the F. graminearum 3ADON chemotype treatment decreased the agronomic trait values by up to 44% across cultivars. Spike number, spike weight, and seed weight were the most improved traits by the BCA. A more measurable improvement in agronomic traits was observed in durum wheat cultivars compared to common wheat.

15.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791308

ABSTRACT

Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid ß-oxidation, autophagy, and virulence.


Subject(s)
Fusarium , Heme , Fusarium/drug effects , Fusarium/metabolism , Fusarium/growth & development , Fusarium/genetics , Heme/biosynthesis , Heme/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Stress, Physiological , Oxidative Stress/drug effects , Triazoles/pharmacology , Gene Expression Regulation, Fungal/drug effects , Fungicides, Industrial/pharmacology , Ferrochelatase/metabolism , Ferrochelatase/genetics
16.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
17.
Pest Manag Sci ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817082

ABSTRACT

BACKGROUND: Fusarium graminearum is a devastating fungal pathogen that poses a significant threat to global wheat production and quality. Control of this toxin-producing pathogen remains a major challenge. This study aimed to isolate strains with antagonistic activity against F. graminearum and at the same time to analyze the synthesis of deoxynivalenol (DON), in order to provide a new basis for the biological control of FHB. RESULTS: Total of 69 microorganisms were isolated from the soil of a wheat-corn crop rotation field, and an antagonistic bacterial strain F12 was identified as Burkholderia pyrrocinia by molecular biology and carbon source utilization. F. graminearum control by strain F12 showed excellent biological activities under laboratory conditions (95.8%) and field testing (63.09%). Meanwhile, the DON content of field-treated wheat grains was detected the results showed that F12 have significantly inhibited of DON, which was further verified by qPCR that F12 produces secondary metabolites that inhibit the expression of DON and pigment-related genes. In addition, the sterile fermentation broth of F12 not only inhibited mycelial growth and spore germination, but also prevented mycelia from producing spores. CONCLUSION: In this study B. pyrrocinia was reported to have good control of FHB and inhibition of DON synthesis. This novel B. pyrrocinia F12 is a promising biological inoculant, providing possibilities for controlling FHB, and a theoretical basis for the development of potential biocontrol agents and biofertilizers for agricultural use. © 2024 Society of Chemical Industry.

18.
3 Biotech ; 14(6): 162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38803445

ABSTRACT

In order to search for high specific activity and the resistant xylanases to XIP-I and provide more alternative xylanases for industrial production, a strain of Fusarium graminearum from Triticum aestivum grains infected with filamentous fungus produced xylanases was isolated and identified. Three xylanase genes from Fusarium graminearum Z-1 were cloned and successfully expressed in E. coli and P. pastoris, respectively. The specific activities of Fgxyn1, EFgxyn2 and EFgxyn3 for birchwood xylan were 38.79, 0.85 and 243.83 U/mg in E. coli, and 40.11, 0 and 910.37 U/mg in P. pastoris, respectively. EFgxyn3 and PFgxyn3 had the similar optimum pH at 6.0 and pH stability at 5.0-9.0. However, they had different optimum temperature and thermal stability, with 30 °C for EFgxyn3 and 40 °C for PFgxyn3, and 4-35 °C for EFgxyn3 and 4-40 °C for PFgxyn3, respectively. The substrate spectrum and the kinetic parameters showed that the two xylanases also exhibited the highest xylanase activity and catalytic efficiency (kcat/km) toward birchwood xylan, with 243.83 U/mg and 61.44 mL/mg/s for EFgxyn3 and 910.37 U/mg and 910.37 mL/mg/s for PFgxyn3, respectively. This study provided a novel mesophilic xylanase with high specific activity and catalytic efficiency, thus making it a promising candidate for extensive applications in animal feed and food industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03973-0.

19.
Genes (Basel) ; 15(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38674409

ABSTRACT

The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.


Subject(s)
Fusarium , Plant Diseases , Trichothecenes , Triticum , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/metabolism , Trichothecenes/metabolism , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Virulence Factors/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence/genetics , Reproduction/genetics
20.
mSphere ; 9(5): e0081823, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38591889

ABSTRACT

The mycelium of the plant pathogenic fungus Fusarium graminearum exhibits distinct structures for vegetative growth, asexual sporulation, sexual development, virulence, and chlamydospore formation. These structures are vital for the survival and pathogenicity of the fungus, necessitating precise regulation based on environmental cues. Initially identified in Magnaporthe oryzae, the transcription factor Con7p regulates conidiation and infection-related morphogenesis, but not vegetative growth. We characterized the Con7p ortholog FgCon7, and deletion of FgCON7 resulted in severe defects in conidium production, virulence, sexual development, and vegetative growth. The mycelia of the deletion mutant transformed into chlamydospore-like structures with high chitin level accumulation. Notably, boosting FgABAA expression partially alleviated developmental issues in the FgCON7 deletion mutant. Chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, the chitin synthase gene Fg6550 (FGSG_06550) showed significant upregulation in the FgCON7 deletion mutant, and altering FgCON7 expression affected cell wall integrity. Further research will focus on understanding the behavior of the chitin synthase gene and its regulation by FgCon7 in F. graminearum. This study contributes significantly to our understanding of the genetic pathways that regulate hyphal differentiation and conidiation in this plant pathogenic fungus. IMPORTANCE: The ascomycete fungus Fusarium graminearum is the primary cause of head blight disease in wheat and barley, as well as ear and stalk rot in maize. Given the importance of conidia and ascospores in the disease cycle of F. graminearum, precise spatiotemporal regulation of these biological processes is crucial. In this study, we characterized the Magnaporthe oryzae Con7p ortholog and discovered that FgCon7 significantly influences various crucial aspects of fungal development and pathogenicity. Notably, overexpression of FgABAA partially restored developmental defects in the FgCON7 deletion mutant. ChIP-qPCR analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, our research revealed a clear correlation between FgCon7 and chitin accumulation and the expression of chitin synthase genes. These findings offer valuable insights into the genetic mechanisms regulating conidiation and the significance of mycelial differentiation in this plant pathogenic fungus.


Subject(s)
Fungal Proteins , Fusarium , Gene Expression Regulation, Fungal , Plant Diseases , Spores, Fungal , Transcription Factors , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/growth & development , Spores, Fungal/genetics , Spores, Fungal/growth & development , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence , Chitin Synthase/genetics , Chitin Synthase/metabolism , Chitin/metabolism , Gene Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...