Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38543649

ABSTRACT

Dry rot of potato tubers is a harmful disease caused by species of the Fusarium genus. Studies on the composition and features of Fusarium spp. that cause the disease in Russia are limited. Thirty-one Fusarium strains belonging to the F. sambucinum species complex (FSAMSC) and F. solani species complex (FSSC) were accurately identified using multilocus phylogenetic analysis of the tef and rpb2 loci, and their physiological characteristics were studied in detail. As a result, 21 strains of F. sambucinum s. str. and 1 strain of F. venenatum within the FSAMSC were identified. Among the analyzed strains within the FSSC, one strain of F. mori, four strains of F. noneumartii, and two strains of both F. stercicola and F. vanettenii species were identified. This is the first record of F. mori on potato as a novel host plant, and the first detection of F. noneumartii and F. stercicola species in Russia. The clear optimal temperature for the growth of the strains belonging to FSAMSC was noted to be 25 °C, with a growth rate of 11.6-15.0 mm/day, whereas, for the strains belonging to FSSC, the optimal temperature range was between 25 and 30 °C, with a growth rate of 5.5-14.1 mm/day. The distinctive ability of F. sambucinum strains to grow at 5 °C has been demonstrated. All analyzed Fusarium strains were pathogenic to potato cv. Gala and caused extensive damage of the tuber tissue at an incubation temperature of 23 °C for one month. Among the fungi belonging to the FSAMSC, the F. sambucinum strains were more aggressive and caused 23.9 ± 2.2 mm of necrosis in the tubers on average compared to the F. venenatum strain-17.7 ± 1.2 mm. Among the fungi belonging to the FSSC, the F. noneumartii strains were the most aggressive and caused 32.2 ± 0.8 mm of necrosis on average. The aggressiveness of the F. mori, F. stercicola, and especially the F. vanettenii strains was significantly lower: the average sizes of damage were 17.5 ± 0.5 mm, 17.2 ± 0.2 mm, and 12.5 ± 1.7 mm, respectively. At an incubation temperature of 5 °C, only the F. sambucinum strains caused tuber necroses in the range of 6.7 ± 0.5-15.9 ± 0.8 mm.

2.
J Fungi (Basel) ; 9(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108920

ABSTRACT

Potato dry rot disease caused by multiple Fusarium species is a major global concern in potato production. In this investigation, the tubers of cultivars Kufri Jyoti and Kufri Frysona were artificially inoculated with an individual or combined inoculum of Fusarium sambucinum and Fusarium solani. Fusarium sambucinum caused a significantly higher lesion development (p < 0.01) than Fusarium solani, irrespective of cultivars. The combined inoculum of both the Fusarium species caused significantly higher rot development (p < 0.005) in inoculated tubers. Analyses of starch and amylose content revealed that individual or mixed infection of fungi caused a significant reduction (p < 0.005) in these parameters compared to healthy tubers. The increased starch digestibility due to fungal infection caused a higher glycemic index and glycemic load. The resistant starch also deteriorated in the infected potato tubers as compared to the control. Kufri Jyoti showed a higher starch and amylose content reduction in response to the treatments compared to Kufri Frysona. The correlation analysis demonstrated a negative correlation in lesion diameter and rot volume with starch and amylose content (p < -0.80). However, the glycemic index and resistant starch were positively correlated with lesion development. Altogether, these findings highlight the progressive deterioration of quality parameters, which will be a critical concern for processing industry stakeholders and consumers.

3.
Braz J Microbiol ; 54(2): 1103-1113, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36807883

ABSTRACT

During storage, infected potato tubers by Fusarium species leads to significant losses. Searching natural-based alternatives to chemical fungicides for the control of tuber dry rot pathogens is becoming essential. Nine Aspergillus spp. (A. niger, A. terreus, A. flavus, and Aspergillus sp.) isolates, recovered from soil and compost samples, were explored and evaluated for their ability to suppress Fusarium sambucinum the main causal agent of potato tuber dry rot disease in Tunisia. All conidial suspensions of Aspergillus spp. tested and their cell-free culture filtrates had significantly inhibited the in vitro pathogen growth by 18.5 to 35.9% and by 9 to 69% compared to control, respectively. A. niger CH12 cell-free filtrate was the most active against F. sambucinum at the three concentration tested (10, 15, and 20% v v-1). Chloroform and ethyl acetate extracts from four Aspergillus spp., tested at 5% v v-1, had limited F. sambucinum mycelial growth by 34-60% and 38-66%, respectively, compared to control, with A. niger CH12 ethyl extract being the most active. Tested on potato tubers inoculated with F. sambucinum, all tested Aspergillus spp. isolates, their cell-free filtrates and organic extracts had significantly decreased the external diameter of dry rot lesion compared to pathogen-inoculated and untreated control tubers. For the rot penetration, all Aspergillus spp. isolates, their organic extracts and only filtrates from A. niger CH12 and MC2 isolates had significantly limited dry rot severity compared to pathogen-inoculated and untreated control. The highest reductions in the external diameter of dry rot lesion (76.6 and 64.1%) and the average rot penetration (77.1 and 65.1%) were achieved using chloroform and ethyl acetate extracts from A. niger CH12, respectively. These results clearly demonstrated the presence of bioactive compounds in Aspergillus spp. that can be extracted and explored as an eco-friendly alternative for the control of the target pathogen.


Subject(s)
Composting , Fusarium , Solanum tuberosum , Soil , Solanum tuberosum/microbiology , Chloroform/metabolism , Aspergillus
4.
Chem Biodivers ; 19(1): e202100835, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34812593

ABSTRACT

Cera pepper (Capsicum pubescens) is an exotic fruit considered as a rich source of nutraceuticals with known benefits for human health and also an economic resource for local producers in Mexico. The present investigation reports on the in vitro and in situ antifungal activity of the essential oil from Mentha piperita and its two major volatiles (menthol and menthone) against Fusarium sambucinum, which is a causal agent of soft rot in cera pepper. The application of these components in pepper fruits previously infected with F. sambucinum caused a significant delay (p<0.05) in the emergence of soft rot symptoms. This effect was reflected in the maintenance of pH and fruit firmness during a period of 10 days. The nutrimental content of the fruits (protein, fiber, fat and other proximate parameters) was conserved in the same period of time. The nutraceutical content of these fruits was estimated by the quantification of seven carotenoids (violaxanthin, cis-violaxanthin, luteoxanthin, antheraxanthin, lutein, zeaxanthin and ß-carotene), ascorbic acid and capsaicinoids (capsaicin and dihydrocapsaicin). According to our results, the essential oil from M. Piperita and its major volatiles exerted a preservative effect on these metabolites. Our findings demonstrated that the essential oil of M. Piperita and its major volatiles represent an ecological alternative for the control of fusariosis caused by F. sambucinum in cera peppers under postharvest conditions.


Subject(s)
Capsicum/microbiology , Fusarium/drug effects , Mentha piperita/chemistry , Plant Diseases/prevention & control , Plant Oils/pharmacology , Volatile Organic Compounds/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Capsaicin/analysis , Capsaicin/isolation & purification , Capsicum/growth & development , Carotenoids/analysis , Carotenoids/isolation & purification , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Hydrogen-Ion Concentration , Mass Spectrometry , Mentha piperita/metabolism , Plant Diseases/microbiology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Oils/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
5.
Toxins (Basel) ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34941693

ABSTRACT

The current study investigated the fungal diversity in freshly harvested oat samples from the two largest production regions in Brazil, Paraná (PR) and Rio Grande do Sul (RS), focusing primarily on the Fusarium genus and the presence of type B trichothecenes. The majority of the isolates belonged to the Fusarium sambucinum species complex, and were identified as F. graminearum sensu stricto (s.s.), F. meridionale, and F. poae. In the RS region, F. poae was the most frequent fungus, while F. graminearum s.s. was the most frequent in the PR region. The F. graminearum s.s. isolates were 15-ADON genotype, while F. meridionale and F. poae were NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR and RS were contaminated with type B trichothecenes, respectively. Oat grains from PR were predominantly contaminated with DON, whereas NIV was predominant in oats from RS. Twenty-four percent of the samples were contaminated with DON at levels higher than Brazilian regulations. Co-contamination of DON, its derivatives, and NIV was observed in 84% and 57.7% of the samples from PR and RS, respectively. The results provide new information on Fusarium contamination in Brazilian oats, highlighting the importance of further studies on mycotoxins.


Subject(s)
Avena/chemistry , Avena/microbiology , Fusarium/isolation & purification , Trichothecenes, Type B/analysis , Brazil , Edible Grain/chemistry , Edible Grain/microbiology , Food Contamination/analysis , Fusarium/classification , Fusarium/genetics , Mycotoxins/analysis , Trichothecenes/analysis
6.
Front Microbiol ; 12: 641484, 2021.
Article in English | MEDLINE | ID: mdl-33927702

ABSTRACT

An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.

7.
Food Res Int ; 136: 109336, 2020 10.
Article in English | MEDLINE | ID: mdl-32846534

ABSTRACT

This study investigated the fungal diversity in Brazilian barley samples, focusing on the Fusarium sambucinum species complex and the presence of multiple mycotoxins: aflatoxins B1, B2, G1, G2 beauvericin (BEA), enniatins (ENNs) A, A1, B, and B1, deoxynivalenol (DON), fumonisins (FB) B1 and B2, HT-2 and T-2 toxins, nivalenol (NIV) and ochratoxin A (OTA) from two different regions, São Paulo (SP) and Rio Grande do Sul (RS). The majority of the isolates belonged to the Fusarium sambucinum species complex (FSAMSC), with F. graminearum s.s. characterized as the major contaminant. F. meridionale and F. poae were the second most frequent fungi isolated from SP and RS, respectively. All of the F. graminearum s.s. isolates demonstrated 15-ADON genotype, whereas F. poae and F. meridionale were all NIV. The majority of the F. cortaderiae isolates were NIV, with only one 3-ADON genotype. Mycotoxin analysis revealed that none of the samples were contaminated by aflatoxins, OTA, FB2 and type A trichothecenes, however, all of the samples were contaminated with at least one Fusarium toxin. Contamination by DON, ZEA, ENNB and ENNB1 levels were significantly higher in RS. Co-contamination of BEA, DON, ENNs, NIV and ZEA in 18.5% and 24.2% of the analyzed samples was observed, from SP and RS respectively. More than 20% of the samples from RS presented DON and ZEA levels above the regulations established by Europe and Brazil. The results provide further information on the FSAMSC from South America and detected multiple Fusarium toxins in barley samples. This highlights the importance for further studies on the possible interactions of these mycotoxins in order to determine potential risks to animal health.


Subject(s)
Fusarium , Hordeum , Mycotoxins , Brazil , Europe , Fusarium/genetics
8.
J Appl Microbiol ; 129(2): 256-265, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32011049

ABSTRACT

AIMS: In this study, the antifungal effect of cinnamaldehyde against Fusarium sambucinum and its underlying mechanisms were determined. METHODS AND RESULTS: Minimum inhibitory concentration and minimal fungicidal concentration of cinnamaldehyde were 3 and 4 mmol l-1 on spore germination and colony development assays in vitro, respectively. Furthermore, the lesion diameter of potato tubers and tuber slices inoculated with F. sambucinum was reduced by 76·9 and 69% after treatment with 4 mmol l-1 cinnamaldehyde. Cytometric analyses revelled that cinnamaldehyde significantly affected the integrity of cell membrane firstly, then decreased mitochondrial membrane potential and induced the accumulation of intracellular reactive oxygen species. Meanwhile, high-performance liquid chromatography results indicated that 3 mmol l-1 cinnamaldehyde could reduce the ergosterol content by 67·94%. This effect was accompanied by a down-regulation of ERG11, ERG6 and ERG4 which were involved in ergosterol biosynthesis. CONCLUSION: Theses results suggest that cinnamaldehyde exerts strong antifungal activity against F. sambucinum, probably by affecting the ergosterol biosynthetic processes what leads to the disruption of cell membrane integrity. SIGNIFICANCE AND IMPACT OF THE STUDY: Cinnamaldehyde is a predominant constituent and key flavour compound of cinnamon essential oil. It has been used as a food additive and flavorant. It is expected to be a novel and safe fungicide for controlling dry rot in potato tubes.


Subject(s)
Acrolein/analogs & derivatives , Ergosterol/biosynthesis , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Acrolein/pharmacology , Cell Membrane/drug effects , Ergosterol/genetics , Fusarium/metabolism , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Solanum tuberosum/microbiology
9.
Int J Biol Macromol ; 152: 393-402, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32084487

ABSTRACT

A xylose-specific intracellular lectin, showing hemagglutination only with rabbit erythrocytes was purified from mycelium of Fusarium sambucinum which was designated as FSL. An array of anion exchange chromatography on Q-Sepharose and gel-exclusion chromatography on Sephadex G-100 resulted in 84.21% yield and 53.99-fold purification of lectin with specific activity of 169.53 titre/mg. Molecular weight of FSL determined by SDS-PAGE was 70.7 kDa, which was further confirmed by gel-exclusion chromatography. Native-PAGE analysis of FSL showed its monomeric nature. FSL was observed to be a glycoprotein containing 2.9% carbohydrate. Hapten inhibition profile of FSL displayed its strong affinity towards D-xylose (MIC 1.562 mM), L-fucose (MIC 6.25 mM), D-mannose (MIC 3.125 mM), fetuin (MIC 15.62 µg/mL), asialofetuin (MIC 125 µg/mL) and BSM (MIC 3.125 µg/mL). Affinity of FSL towards xylose is rare. FSL was found stable over a pH range 6.0-7.5 and upto 40 °C temperature. Hemagglutination activity of FSL remained unaffected by divalent ions. Lectin concentration of 5 µg/mL was found sufficient to stimulate proliferation of murine spleen cells and its concentration 75 µg/mL exhibited highest mitogenic potential. FSL exhibited maximum mitogenic stimulatory index of 14.35. The purification, characterisation and mitogenicity of F. sambucinum lectin has been reported first time.


Subject(s)
Fusarium/chemistry , Lectins/chemistry , Mitogens/chemistry , Xylose/chemistry , Animals , Carbohydrates/chemistry , Cell Proliferation/drug effects , Glycoproteins/chemistry , Hemagglutination/drug effects , Hemagglutination Tests/methods , Hydrogen-Ion Concentration , Lectins/pharmacology , Mice , Mice, Inbred BALB C , Mitogens/pharmacology , Molecular Weight , Mycelium/chemistry , Rabbits , Spleen/drug effects , Temperature
10.
J Agric Food Chem ; 67(43): 11994-12001, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31618578

ABSTRACT

Bioactivity-guided isolation of the endophytic fungus Fusarium sambucinum TE-6L residing in Nicotiana tabacum L. led to the discovery of two new angularly prenylated indole alkaloids (PIAs) with pyrano[2,3-g]indole moieties, amoenamide C (1) and sclerotiamide B (2), and four known biosynthetic congeners (3-6). Their structures were determined by comprehensive spectroscopic techniques, electronic circular dichroism (ECD), and X-ray diffraction. Compound 1 containing the bicyclo[2.2.2]diazaoctane core and indoxyl unit is rarely reported. All the compounds were evaluated for their antimicrobial and insecticidal activities. Notably, compounds 1-3 showed potent inhibitory effects against three human- and one plant-pathogenic bacterium, and seven plant-pathogenic fungi. Compounds 2-4 also exhibited remarkable larvicidal activity against first instar larvae of the cotton bollworm Helicoverpa armigera with mortality rates of 70.2%, 83.2%, and 70.5%, respectively. Further toxicity tests on zebrafish embryos were performed to evaluate the potential toxicity of PIAs. Of significance was that compound 3 in particular exhibited the highest activities but the lowest effects on the hatching of embryos among all the compounds. This study provides a basis for understanding developmental toxicity of PIAs exposure to zebrafish embryos, and also indicates the potential environmental risks of other natural compounds exposure in the aquatic ecosystem.


Subject(s)
Anti-Infective Agents/chemistry , Endophytes/chemistry , Fusarium/chemistry , Indole Alkaloids/chemistry , Insecticides/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Endophytes/isolation & purification , Fungi/drug effects , Fusarium/isolation & purification , Indole Alkaloids/metabolism , Indole Alkaloids/pharmacology , Insecticides/metabolism , Insecticides/pharmacology , Larva/drug effects , Microbial Sensitivity Tests , Molecular Structure , Moths/drug effects , Nicotiana/microbiology , Zebrafish/embryology
11.
Int J Mol Sci ; 17(12)2016 Dec 10.
Article in English | MEDLINE | ID: mdl-27973408

ABSTRACT

Oligosaccharide elicitors from pathogens have been shown to play major roles in host plant defense responses involving plant-pathogen chemoperception and interaction. In the present study, chitosan and oligochitosan were prepared from pathogen Fusarium sambucinum, and their effects on infection of Zanthoxylum bungeanum stems were investigated. Results showed that oligochitosan inhibited the infection of the pathogen, and that the oligochitosan fraction with a degree of polymerization (DP) between 5 and 6 showed the optimal effect. Oligochitosan DP5 was purified from fraction DP5-6 and was structurally characterized using electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Oligochitosan DP5 showed significant inhibition against the infection of the pathogenic fungi on host plant stems. An investigation of the mechanism underlying this effect showed that oligochitosan DP5 increased the activities of defensive enzymes and accumulation of phenolics in host Z. bungeanum. These results suggest that oligochitosan from pathogenic fungi can mediate the infection of host plants with a pathogen by acting as an elicitor that triggers the defense system of a plant. This information will be valuable for further exploration of the interactions between the pathogen F. sambucinum and host plant Z. bungeanum.


Subject(s)
Chitin/analogs & derivatives , Fusarium/chemistry , Zanthoxylum/immunology , Zanthoxylum/microbiology , Carbon-13 Magnetic Resonance Spectroscopy , Chitin/chemistry , Chitin/isolation & purification , Chitin/pharmacology , Chitosan/isolation & purification , Chitosan/pharmacology , Oligosaccharides , Phenols/metabolism , Plant Diseases/microbiology , Plant Stems/drug effects , Plant Stems/microbiology , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Zanthoxylum/drug effects , Zanthoxylum/enzymology
12.
Int J Mol Sci ; 17(7)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27376270

ABSTRACT

In this report, the effects of two oligochitosans, i.e., oligochitosan A (OCHA) and oligochitosan B (OCHB), on control of dry rot of Zanthoxylum bungeanum (Z. bungeanum) caused by Fusarium sambucinum (F. sambucinum) were evaluated. First, both oligochitosans show desirable ability to decrease the infection of F. sambucinum. Second, the oligochitosans strongly inhibit the radial colony and submerged biomass growth of F. sambucinum. Lastly, these oligochitosans are capable of increasing the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) significantly, as well as enhancing the content of total phenolics in Z. bungeanum stems. These findings indicate that the protective effects of OCHA and OCHB on Z. bungeanum stems against dry rot may be associated with the direct fungitoxic function against pathogen and the elicitation of biochemical defensive responses in Z. bungeanum stems. The outcome of this report suggests that oligochitosans may serve as a promising natural fungicide to substitute, at least partially, for synthetic fungicides in the disease management of Z. bungeanum.


Subject(s)
Chitin/analogs & derivatives , Zanthoxylum/chemistry , Catechol Oxidase/metabolism , Chitin/chemistry , Chitin/pharmacology , Chitosan , Fusarium/drug effects , Fusarium/growth & development , Oligosaccharides , Peroxidase/metabolism , Phenols/chemistry , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Stems/chemistry , Plant Stems/enzymology , Plant Stems/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , Zanthoxylum/enzymology , Zanthoxylum/metabolism
13.
Bioresour Technol ; 218: 1266-70, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27406717

ABSTRACT

The aim of this work is to explore integracide analogues from secondary metabolites of microorganisms. A new tetracyclic triterpene sulfate was produced by solid-state fermentation (SSF) with Fusarium sambucinum B10.2. The tetracyclic triterpene sulfate was identified as (3S,5R,10S,11S,12S,13R,17R,20R)-4,4-dimethylergosta-8,14,24-triene-3,11,12-triol-12-acetate, 3-sulfate on the basis of HRESIMS, NMR and electronic circular dichroism (ECD) spectra and named sambacide (1). The antibacterial and antifungal assays of sambacide (1) showed significant antibacterial activities against Staphylococcus aureus and Escherichia coli. The fermentation conditions including culture media, fermentation temperature and time, were optimized. And potato was selected as the fermentation substrate, 28°C was used as the fermentation temperature, and 20-days fermentation time was determined for F. sambucinum-SSF to produce sambacide (1) with a high yield of 19.04±0.82g/kg. This paper provides an efficient approach to produce the antibacterial and antifungal agent sambacide (1) in a very high yield.


Subject(s)
Anti-Bacterial Agents , Fusarium , Solanum tuberosum/chemistry , Sulfates , Tetracycline , Triterpenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Fermentation , Fusarium/chemistry , Fusarium/metabolism , Staphylococcus aureus/drug effects , Sulfates/chemistry , Sulfates/metabolism , Sulfates/pharmacology , Tetracycline/chemistry , Tetracycline/metabolism , Tetracycline/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Triterpenes/pharmacology
14.
Environ Sci Pollut Res Int ; 22(20): 15656-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26018288

ABSTRACT

Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.


Subject(s)
Bacillus subtilis/physiology , Fruit/microbiology , Fusarium/physiology , Plant Diseases/microbiology , Rubus/microbiology , Biological Control Agents , Disease Resistance , Necrosis
15.
Protein Expr Purif ; 108: 73-79, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25543085

ABSTRACT

A gene encoding a galactose oxidase (GalOx) was isolated from Fusarium sambucinum cultures and overexpressed in Escherichia coli yielding 4.4mg enzyme per L of growth culture with a specific activity of 159Umg(-1). By adding a C-terminal His-tag the enzyme could be easily purified with a single affinity chromatography step with high recovery rate (90%). The enzyme showed a single band on SDS-PAGE with an apparent molecular mass of 68.5kDa. The pH optimum for the oxidation of galactose was in the range of pH 6-7.5. Optimum temperature for the enzyme activity was 35°C, with a half-life of 11.2min, 5.3min, and 2.7min for incubation at 40°C, 50°C, and 60°C, respectively. From all tested substrates, the highest relative activity was found for 1-methyl-ß-galactopyranoside (226Umg(-1)) and the highest catalytic efficiency (kcat/Km) for melibiose (2700mM(-1)s(-1)). The enzyme was highly specific for molecular oxygen as an electron acceptor, and showed no appreciable activity with a range of alternative acceptors investigated. Different chemicals were tested for their effect on GalOx activity. The activity was significantly reduced by EDTA, NaN3, and KCN.


Subject(s)
Escherichia coli/metabolism , Fungal Proteins , Fusarium/enzymology , Galactose Oxidase , Gene Expression , Escherichia coli/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fusarium/genetics , Galactose Oxidase/biosynthesis , Galactose Oxidase/chemistry , Galactose Oxidase/genetics , Galactose Oxidase/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
16.
FEMS Microbiol Lett ; 348(1): 46-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23964970

ABSTRACT

Trichothecenes are an important family of mycotoxins produced by several species of the genus Fusarium. These fungi cause serious disease on infected plants and postharvest storage of crops, and the toxins can cause health problems for humans and animals. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens, and most rely on chemicals, creating therefore subsequent problems of chemical resistance. We tested the impact of the symbiotic arbuscular mycorrhizal fungus Glomus irregulare on a trichothecene-producing strain of Fusarium sambucinum isolated from naturally infected potato plants. Using dual in vitro cultures, we showed that G. irregulare inhibited the growth of F. sambucinum and significantly reduced the production of the trichothecene 4, 15-diacetoxyscirpenol (DAS). Furthermore, using G. irregulare-colonized potato plants infected with F. sambucinum, we found that the G. irregulare treatment inhibited the production of DAS in roots and tubers. Thus, in addition to the known beneficial effect of mycorrhizal symbiosis on plant growth, we found that G. irregulare controlled the growth of a virulent fungal pathogen and reduced production of a mycotoxin. This previously undescribed, biological control of Fusarium mycotoxin production by G. irregulare has potential implications for improved potato crop production and food safety.


Subject(s)
Fusarium/metabolism , Glomeromycota/physiology , Microbial Interactions , Mycotoxins/metabolism , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Virulence Factors/metabolism , Fusarium/growth & development , Fusarium/isolation & purification , Plant Roots/microbiology , Plant Tubers/microbiology , Trichothecenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL