Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.757
Filter
1.
Article in English | MEDLINE | ID: mdl-38715896

ABSTRACT

Immunoglobulin G4 (IgG4)-related diseaseis a systemic inflammatory condition of unknown etiology characterized by increases in serum IgG4 and in the number of IgG4-positive cells in affected tissues. One of the commonly involved locations is the pancreas; this condition is known as type 1 autoimmune pancreatitis (AIP). Type 1 AIP, which shows a biliary stricture in the intrapancreatic bile duct, can be misdiagnosed as a malignancy due to similar cholangiography findings and clinical presentation. In rare cases complicated by post-bulbar duodenal ulcers, differentiating between type 1 AIP and malignancies is even more difficult. An 81-year-old male was referred to our hospital for the treatment of a pancreatic head mass and obstructive jaundice. Serological and radiological findings were consistent with both type 1 AIP and a malignancy. Gastroduodenoscopy revealed a post-bulbar duodenal ulcer with endoscopic features that evoked malignant duodenal invasion. Although biopsies were negative for malignant cells, subsequent bleeding from the lesion suggested the progression of malignancy, which led to surgical resection. Pancreatoduodenectomy and pathological examination indicated that type 1 AIP was present. Simultaneously, the involvement of IgG4-related disease in the ulcerative lesion was suggested. To our knowledge, this is the first reported case of type 1 AIP complicated by post-bulbar duodenal ulcers, which was misdiagnosed as malignancy and considered an IgG4-related gastrointestinal disease associated with type 1 AIP.

2.
Mol Pharmacol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991745

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters or hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαßγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity, to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gßγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components, or in physiologically-relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. Significance Statement G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.

3.
Mitochondrion ; : 101934, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992856

ABSTRACT

A hallmark of neuroinflammatory disorders is mitochondrial dysfunction. Nevertheless, the transcriptional changes underlying this alteration are not well-defined. Microglia activation, a decrease in mitochondrion biogenesis and a subsequent alteration of the redox are common factors in diseases coursing with neuroinflammation. In the last two decades, components of the adenosinergic system have been proposed as potential therapeutic targets to combat neuroinflammation. In this research, we analyzed by RNAseq the gene expression in activated microglia treated with an adenosine A2A receptor antagonist, SCH 582561, and/or an A3 receptor agonist, 2-Cl-IB-MECA, since these receptors are deeply related to neurodegeneration and inflammation. The analysis was focused on genes related to inflammation and REDOX homeostasis. It was detected that in the three conditions (microglia treated with 2-Cl-IB-MECA, SCH 582561, and the combination) more than 40 % of the detected genes codified by the mitochondrial genome were differentially expressed (FDR < 0.05) (14/34, 16/34, and 13/34) respectively, being almost all of them (>85 %) upregulated in the microglia treated with adenosinergic compounds. Also, we analyzed the differential expression of genes related to mitochondrial function and oxidative stress codified by the nuclear genome. Additionally, we evaluated the oxygen consumption rate (OCR) of mitochondria in microglia treated with LPS and IFN-γ, both alone and in combination with adenosinergic compounds. The data showed an improvement in mitochondrial function with the antagonist of the adenosine A2A receptor, compared to the effects of pro-inflammatory stimulus, confirming a functional effect consistent with the RNAseq data.

4.
CNS Neurosci Ther ; 30(7): e14855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38992889

ABSTRACT

BACKGROUND: G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE: To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS: This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS: The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION: G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Mitochondria , Receptors, Estrogen , Receptors, G-Protein-Coupled , Stress Disorders, Post-Traumatic , Synapses , Animals , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/prevention & control , Stress Disorders, Post-Traumatic/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Mice , Male , Mitochondria/drug effects , Mitochondria/metabolism , Receptors, Estrogen/metabolism , Synapses/drug effects , Synapses/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Mice, Inbred C57BL
5.
Methods Mol Biol ; 2780: 257-280, 2024.
Article in English | MEDLINE | ID: mdl-38987472

ABSTRACT

The interactions of G-protein-coupled receptors (GPCRs) with other proteins are critical in several cellular processes but resolving their structural dynamics remains challenging. An increasing number of GPCR complexes have been experimentally resolved but others including receptor variants are yet to be characterized, necessitating computational predictions of their interactions. Although integrative approaches with multi-scale simulations would provide rigorous estimates of their conformational dynamics, protein-protein docking remains a first tool of choice of many researchers due to the availability of open-source programs and easy to use web servers with reasonable predictive power. Protein-protein docking algorithms have limited ability to consider protein flexibility, environment effects, and entropy contributions and are usually a first step towards more integrative approaches. The two critical steps of docking: the sampling and scoring algorithms have improved considerably and their performance has been validated against experimental data. In this chapter, we provide an overview and generalized protocol of a few docking protocols using GPCRs as test cases. In particular, we demonstrate the interactions of GPCRs with extracellular protein ligands and an intracellular protein effectors (G-protein) predicted from docking approaches and test their limitations. The current chapter will help researchers critically assess docking protocols and predict experimentally testable structures of GPCR complexes.


Subject(s)
Algorithms , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Molecular Docking Simulation/methods , Humans , Ligands , Software , Protein Conformation , Computational Biology/methods
6.
Methods Mol Biol ; 2780: 281-287, 2024.
Article in English | MEDLINE | ID: mdl-38987473

ABSTRACT

G-protein-coupled receptors (GPCRs), the largest family of human membrane proteins, play a crucial role in cellular control and are the target of approximately one-third of all drugs on the market. Targeting these complexes with selectivity or formulating small molecules capable of modulating receptor-receptor interactions could potentially offer novel avenues for drug discovery, fostering the development of more refined and safer pharmacotherapies. Due to the lack of experimentally derived X-ray crystallography spectra of GPCR oligomers, there is growing evidence supporting the development of new in silico approaches for predicting GPCR self-assembling structures. The significance of GPCR oligomerization, the challenges in modeling these structures, and the potential of protein-protein docking algorithms to address these challenges are discussed. The study also underscores the use of various software solutions for modeling GPCR oligomeric structures and presents practical cases where these techniques have been successfully applied.


Subject(s)
Molecular Docking Simulation , Protein Multimerization , Receptors, G-Protein-Coupled , Software , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation/methods , Humans , Protein Binding , Algorithms , Crystallography, X-Ray/methods , Protein Conformation , Models, Molecular
7.
Stroke ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946544

ABSTRACT

BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.

8.
J Cancer ; 15(13): 4287-4300, 2024.
Article in English | MEDLINE | ID: mdl-38947378

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the main type of primary liver cancer, and its related death ranks third worldwide. The curative methods and progress prediction markers of HCC are not sufficient enough. Nevertheless, little progress has been made in the signature of m1A-, m5C-, m6A-, m7G-, and DNA methylation of HCC. Results: We calibrated a risk gene signature model that can be used to categorize HCC patients based on univariate, multivariate, and LASSO Cox regression analysis. This gene signature classified the patients into high- and low-risk subgroups. Patients in the high-risk group showed significantly reduced overall survival (OS) compared with patients in the low-risk group. The gene set variation analysis (GSVA), immune infiltration, and immunotherapy response were analyzed. The results demonstrated that an immunosuppressive environment was exited and the high-risk group had higher sensitivity to 5-fluorouracil, cisplatin, sorafenib, tamoxifen, and epirubicin. These results indicated personalized therapy should be taken into consideration. Conclusions: Our findings enriched our understanding of the molecular heterogeneity, tumor microenvironment (TME), and drug susceptibility of HCC. m1A-, m5C-, m6A-, m7G-, and DNA methylation-related regulators may be promising biomarkers for future research.

9.
Chin Med ; 19(1): 92, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956679

ABSTRACT

G protein-coupled receptors (GPCRs) widely exist in vivo and participate in many physiological processes, thus emerging as important targets for drug development. Approximately 30% of the Food and Drug Administration (FDA)-approved drugs target GPCRs. To date, the 'one disease, one target, one molecule' strategy no longer meets the demands of drug development. Meanwhile, small-molecule drugs account for 60% of FDA-approved drugs. Traditional Chinese medicine (TCM) has garnered widespread attention for its unique theoretical system and treatment methods. TCM involves multiple components, targets and pathways. Centered on GPCRs and TCM, this paper discusses the similarities and differences between TCM and GPCRs from the perspectives of syndrome of TCM, the consistency of TCM's multi-component and multi-target approaches and the potential of GPCRs and TCM in the development of novel drugs. A novel strategy, 'simultaneous screening of drugs and targets', was proposed and applied to the study of GPCRs. We combine GPCRs with TCM to facilitate the modernisation of TCM, provide valuable insights into the rational application of TCM and facilitate the research and development of novel drugs. This study offers theoretical support for the modernisation of TCM and introduces novel ideas for development of safe and effective drugs.

10.
Stem Cell Res Ther ; 15(1): 193, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956724

ABSTRACT

BACKGROUND: The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity. The hypoimmunogenic cell strategy is allogenic cell therapy without using immune suppressants. Advances in gene engineering technology now permit the generation of hypoimmunogenic cells to avoid allogeneic immune rejection. In this study, we generated a hypoimmunogenic hiPSC (HyPSC) clone that had diminished expression of human leukocyte antigen (HLA) class Ia and class II and expressed immune checkpoint molecules and a safety switch. METHODS: First, we generated HLA class Ia and class II double knockout (HLA class Ia/II DKO) hiPSCs. Then, a HyPSC clone was generated by introducing exogenous ß-2-microglobulin (B2M), HLA-G, PD-L1, and PD-L2 genes, and the Rapamycin-activated Caspase 9 (RapaCasp9)-based suicide gene as a safety switch into the HLA class Ia/II DKO hiPSCs. The characteristics and immunogenicity of the HyPSCs and their derivatives were analyzed. RESULTS: We found that the expression of HLA-G on the cell surface can be enhanced by introducing the exogenous HLA-G gene along with B2M gene into HLA class Ia/II DKO hiPSCs. The HyPSCs retained a normal karyotype and had the characteristics of pluripotent stem cells. Moreover, the HyPSCs could differentiate into cells of all three germ layer lineages including CD45+ hematopoietic progenitor cells (HPCs), functional endothelial cells, and hepatocytes. The HyPSCs-derived HPCs exhibited the ability to evade innate and adaptive immunity. Further, we demonstrated that RapaCasp9 could be used as a safety switch in vitro and in vivo. CONCLUSION: The HLA class Ia/II DKO hiPSCs armed with HLA-G, PD-L1, PD-L2, and RapaCasp9 molecules are a potential source of stem cells for allogeneic transplantation.


Subject(s)
Adaptive Immunity , B7-H1 Antigen , HLA-G Antigens , Immunity, Innate , Induced Pluripotent Stem Cells , Programmed Cell Death 1 Ligand 2 Protein , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , HLA-G Antigens/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Ligand 2 Protein/genetics , Animals , Mice
11.
Cancer Diagn Progn ; 4(4): 529-533, 2024.
Article in English | MEDLINE | ID: mdl-38962554

ABSTRACT

Background/Aim: Granulocyte colony-stimulating factor (G-CSF)-producing neoplasms are relatively rare; however, little is known on the clinical features of G-CSF-producing lung cancer harboring activating epidermal growth factor receptor (EGFR) mutations. Case Report: A 66-year-old female was definitively diagnosed with G-CSF-producing lung cancer that was positive for EGFR mutations. She repeatedly received epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as osimertinib and afatinib. However, she developed resistance to these molecular-targeting drugs within 2 to 3 months after immediate shrinkage. Thus, the patient was treated with chemoimmunotherapy including bevacizumab, and demonstrated a slight survival benefit. Conclusion: Overall, G-CSF-producing lung cancers positive for EGFR mutations were resistant to different treatment modalities. Clinicians should be attentive to the potential resistance of G-CSF-producing EGFR mutant lung cancer to EGFR-TKI therapy.

12.
J Colloid Interface Sci ; 675: 52-63, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964124

ABSTRACT

Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 µmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.

13.
Phytomedicine ; 132: 155845, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964154

ABSTRACT

BACKGROUND: Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE: To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS: The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS: A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS: Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.

14.
Bioorg Med Chem ; 110: 117823, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964170

ABSTRACT

Molecular imaging using positron emission tomography (PET) can serve as a promising tool for visualizing biological targets in the brain. Insights into the expression pattern and the in vivo imaging of the G protein-coupled orexin receptors OX1R and OX2R will further our understanding of the orexin system and its role in various physiological and pathophysiological processes. Guided by crystal structures of our lead compound JH112 and the approved hypnotic drug suvorexant bound to OX1R and OX2R, respectively, we herein describe the design and synthesis of two novel radioligands, [18F]KD23 and [18F]KD10. Key to the success of our structural modifications was a bioisosteric replacement of the triazole moiety with a fluorophenyl group. The 19F-substituted analog KD23 showed high affinity for the OX1R and selectivity over OX2R, while the high affinity ligand KD10 displayed similar Ki values for both subtypes. Radiolabeling starting from the respective pinacol ester precursors resulted in excellent radiochemical yields of 93% and 88% for [18F]KD23 and [18F]KD10, respectively, within 20 min. The new compounds will be useful in PET studies aimed at subtype-selective imaging of orexin receptors in brain tissue.

15.
Biomed Pharmacother ; 177: 117087, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964178

ABSTRACT

Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.

16.
Lab Invest ; : 102107, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964504

ABSTRACT

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers, however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sub-lines were established. Wound-healing and Transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (SCID mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 down-stream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sub-lines, OE cells presented weaker migration/invasion abilities, compared with controls, while in KD cells these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G-protein coupled receptor C5C (GPRC5C) was a key down-stream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion, and remarkably reversed the pro-invasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histological grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via down-regulation of GPRC5C.

17.
Transfusion ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965867

ABSTRACT

BACKGROUND: Granulocyte transfusions for patients with prolonged neutropenia and severe infections has been a controversial practice. Previous studies suggest a benefit of high-dose granulocyte transfusions (≥0.6 × 109/kg), although, until recently, the consistent production of high-dose units has been challenging. Here, we present our experience and results utilizing high-dose granulocyte transfusions at a large, tertiary academic medical center for the treatment of infections in adult, neutropenic patients. STUDY DESIGN/METHODS: A retrospective chart review (2018-2021) was conducted for all patients who received high-dose granulocyte transfusions from donors stimulated with granulocyte colony-stimulating factor (G-CSF) and dexamethasone. Gathered parameters included patient demographics, clinical history, infection status, dose, clinical outcomes, pre- and post-absolute neutrophil count (ANC), and transfusion times including time between granulocyte collection, administration, and posttransfusion ANC count. Gathered parameters were summarized using descriptive statistics, outcomes were assessed utilizing Kaplan-Meier curves/log-rank/regression testing. RESULTS: Totally 28 adult, neutropenic patients refractory to antimicrobial agents and/or G-CSF received a total of 173 granulocyte concentrates. Median ANC increased from 0.7 × 109/L pre-transfusion to 1.6 × 109/L posttransfusion. The mean granulocyte yield was 77.4 × 109 resulting in an average dose per kilogram of 0.90 × 109 ± 0.30 × 109 granulocytes. Composite day 42 survival and microbial response was 42.9% (n = 12/28) without significant adverse reactions. DISCUSSION: Here, we demonstrate the successful and safe implementation of high-dose granulocyte transfusions for neutropenic patients. Given the rapid and consistent production, distribution, and improved granulocyte quality, further investigations to determine the clinical efficacy of G-CSF primed granulocyte transfusions is now possible.

18.
Cell Signal ; 121: 111288, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971569

ABSTRACT

The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124787, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972096

ABSTRACT

A novel cloud-point extraction (CPE) procedure for the determination of ultra-trace amounts of arsenic species in real samples, purchased from the local market by spectrophotometer was developed. Inorganic arsenic species analysis in water, beverages, and foods has become increasingly important in recent years, as arsenic species are considered carcinogenic and are assessed at significant levels in samples. The technique is established on a selective ternary complex of As(V) with astrazon orange G (AOG+) in the presence of tartaric acid and polyethylene glycol tertoctylphenyl ether (Triton X-114) at pH 4.0. The calibration curve developed within range 3.0-160 ng/mL with a correlation coefficient of 0.9988 for As(V) provided a preconcentration factor of 200 and a limit of detection (3S blank/m) of 0.88 ng/mL under optimum investigation conditions. The results of molar absorptivity and Sandell sensitivity are calculated and found to be 4.38 × 105 L/mol cm and 0.018 ng cm-2, respectively. The statistical treatment of data obtained from the proposed and GF-AAS procedures are compared in terms of Student's t-tests and variance ratio F-tests has revealed no significant differences. The methodology has been effectively confirmed by assessing real samples and comparing it to the GF-AAS method statistically.

20.
Chemosphere ; 362: 142787, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972261

ABSTRACT

In this research, the dimensional catalysts of pure g-C3N4 photocatalysts (1D, 2D, and 3D) were investigated for the reduction of the highly toxic/carcinogenic Cr(VI) under visible light irradiation. The catalysts underwent explanation through various surface analysis techniques. According to the BET data, the specific surface area of the 3D catalyst was 1.3 and 7 times higher than those of the 2D and 1D CN catalysts, respectively. The 3D catalyst demonstrated superior performance, achieving an efficiency greater than 99% within 60 min under visible light irradiation in the presence of EDTA due to the abundance of active sites. The study also delved into the influence of factors such as the amount of EDTA-hole scavenger, pH, catalyst dosage, and temperature on the photocatalytic reduction of Cr(VI). Moreover, the 3D catalyst showed excellent reusability, maintaining an efficiency of more than 80% even after 10 cycles, and performed effectively in real water samples. The 3D CN catalyst, with its facile synthesis process, excellent visible light harvesting properties, high reduction efficiency that sustains over multiple cycles, and outstanding performance in real water samples, presents a significant advancement for practical applications in environmental remediation. This research contributes to a new understanding of developing efficient degradation methods for heavy metals in polluted water, highlighting the potential of 3D g-C3N4 catalysts in environmental cleanup efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...