Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 599
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000398

ABSTRACT

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Subject(s)
Immunohistochemistry , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Foxes/genetics , Foxes/metabolism , Mice , Wolves/genetics , Wolves/metabolism , Dogs , Canidae/genetics
2.
Mol Pharmacol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991745

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters or hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαßγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity, to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gßγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components, or in physiologically-relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. Significance Statement G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.

3.
Biochem Soc Trans ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023851

ABSTRACT

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.

4.
Pharmacol Rev ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955509

ABSTRACT

The class F of G protein-coupled receptors (GPCRs) consists of ten Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched (PTCH). The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to a rapid development of our knowledge about structure-function relationships providing a great starting point for drug development. Despite the progress questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. Significance Statement The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.

5.
J Clin Invest ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874642

ABSTRACT

GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G-protein Gαo. Of >80 pathogenic mutations, most are single amino acid substitutions spreading across Gαo sequence. We perform extensive characterization of Gαo mutants showing abnormal GTP uptake and hydrolysis, and deficiencies to bind Gßγ and RGS19. Plasma membrane localization of Gαo is decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerge for the more severe mutants. Pathogenic mutants massively gain interaction with Ric8A and, surprisingly, Ric8B proteins, delocalizing them from cytoplasm to Golgi. Of these two mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/o, Gαq, and Gα12/13 subfamilies, and Ric8B solely for Gαs/olf. Ric8A/B mediate the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through disbalancing the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work discovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights to other maladies caused by G protein misfunctioning and further genetic diseases.

6.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895415

ABSTRACT

G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gßγ, and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gßγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gßγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gßγ signaling in cells and in vivo.

7.
Plant Signal Behav ; 19(1): 2365572, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38904257

ABSTRACT

G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins in metazoans that mediate the regulation of various physiological responses to discrete ligands through heterotrimeric G protein subunits. The existence of GPCRs in plant is contentious, but their comparable crucial role in various signaling pathways necessitates the identification of novel remote GPCR-like proteins that essentially interact with the plant G protein α subunit and facilitate the transduction of various stimuli. In this study, we identified three putative GPCR-like proteins (OsGPCRLPs) (LOC_Os06g09930.1, LOC_Os04g36630.1, and LOC_Os01g54784.1) in the rice proteome using a stringent bioinformatics workflow. The identified OsGPCRLPs exhibited a canonical GPCR 'type I' 7TM topology, patterns, and biologically significant sites for membrane anchorage and desensitization. Cluster-based interactome mapping revealed that the identified proteins interact with the G protein α subunit which is a characteristic feature of GPCRs. Computational results showing the interaction of identified GPCR-like proteins with G protein α subunit and its further validation by the membrane yeast-two-hybrid assay strongly suggest the presence of GPCR-like 7TM proteins in the rice proteome. The absence of a regulator of G protein signaling (RGS) box in the C- terminal domain, and the presence of signature motifs of canonical GPCR in the identified OsGPCRLPs strongly suggest that the rice proteome contains GPCR-like proteins that might be involved in signal transduction.


Subject(s)
Oryza , Plant Proteins , Proteome , Receptors, G-Protein-Coupled , Oryza/metabolism , Oryza/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Proteome/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
8.
mBio ; 15(7): e0122124, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38920360

ABSTRACT

The cytotoxic necrotizing factor (CNF) family of AB-type bacterial protein toxins catalyze two types of modification on their Rho GTPase substrates: deamidation and transglutamination. It has been established that E. coli CNF1 and its close homolog proteins catalyze primarily deamidation and Bordetella dermonecrotic toxin (DNT) catalyzes primarily transglutamination. The rapidly expanding microbial genome sequencing data have revealed that there are at least 13 full-length variants of CNF1 homologs. CNFx from E. coli strain GN02091 is the most distant from all other members of the CNF family with 50%-55% sequence identity at the protein level and 0.45-0.52 nucleotide substitutions per site at the DNA level. CNFx modifies RhoA, Rac1, and Cdc42, and like CNF1, activates downstream SRE-dependent mitogenic signaling pathways in human HEK293T cells, but at a 1,000-fold higher EC50 value. Unlike other previously characterized CNF toxins, CNFx modifies Rho proteins primarily through transglutamination, as evidenced by gel-shift assay and confirmed by MALDI mass spectral analysis, when coexpressed with Rho-protein substrates in E. coli BL21 cells or through direct treatment of HEK293T cells. A comparison of CNF1 and CNFx sequences identified two critical active-site residues corresponding to positions 832 and 862 in CNF1. Reciprocal site-specific mutations at these residues in each toxin revealed hierarchical rules that define the preference for deamidase versus a transglutaminase activity in CNFs. An additional unique Cys residue at the C-terminus of CNFx was also discovered to be critical for retarding cargo delivery.IMPORTANCECytotoxic necrotizing factor (CNF) toxins not only play important virulence roles in pathogenic E. coli and other bacterial pathogens, but CNF-like genes have also been found in an expanding number of genomes from clinical isolates. Harnessing the power of evolutionary relationships among the CNF toxins enabled the deciphering of the hierarchical active-site determinants that define whether they modify their Rho GTPase substrates through deamidation or transglutamination. With our finding that a distant CNF variant (CNFx) unlike other known CNFs predominantly transglutaminates its Rho GTPase substrates, the paradigm of "CNFs deamidate and DNTs transglutaminate" could finally be attributed to two critical amino acid residues within the active site other than the previously identified catalytic Cys-His dyad residues. The significance of our approach and research findings is that they can be applied to deciphering enzyme reaction determinants and substrate specificities for other bacterial proteins in the development of precision therapeutic strategies.


Subject(s)
Bacterial Toxins , Escherichia coli Proteins , Escherichia coli , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/chemistry , Humans , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , HEK293 Cells , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/chemistry
9.
Biochem Pharmacol ; : 116402, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945274

ABSTRACT

"Molecular Glues" are defined as small molecules that can either be endogenous or synthetic which promote interactions between proteins at their interface. Allosteric modulators, specifically GPCR allosteric modulators, can promote both the association and the dissociation of a given receptor's transducer but accomplishes this "at a distance" from the interface. However, recent structures of GPCR G protein complexes in the presence of allosteric modulators indicate that some GPCR allosteric modulators can act as "molecular glues" interacting with both the receptor and the transducer at the interface biasing transducer signaling in both a positive and negative manner depending on the transducer. Given these phenomena we discuss the implications for this class of allosteric modulators to be used as molecular tools and for future drug development.

10.
J Neurochem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783749

ABSTRACT

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.

11.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732215

ABSTRACT

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gß1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gß1. Our work demonstrates a unique relationship between KCTD proteins and Gß1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.


Subject(s)
Cell Proliferation , Potassium Channels , Humans , Cell Proliferation/genetics , CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation , Gene Knockout Techniques , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
12.
Cancers (Basel) ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791951

ABSTRACT

The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy.

13.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713746

ABSTRACT

Phosphoinositide 3-kinase (PI3K) beta (PI3Kß) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kß prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kß localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kß when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kß membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kß prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GßGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kß to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GßGγ or pY/Rac1(GTP), PI3Kß activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kß is synergistically activated by pY/GßGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , rac1 GTP-Binding Protein , rho GTP-Binding Proteins , Humans , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , Microscopy, Fluorescence , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/chemistry , Signal Transduction , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/metabolism , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/metabolism
14.
Physiol Mol Biol Plants ; 30(2): 337-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38623166

ABSTRACT

The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.

15.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651641

ABSTRACT

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Hair Cells, Auditory , Morphogenesis , Animals , Mice , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/physiology , Cell Polarity , GTP-Binding Protein alpha Subunit, Gi2/metabolism , GTP-Binding Protein alpha Subunit, Gi2/genetics
16.
Trends Pharmacol Sci ; 45(5): 419-429, 2024 May.
Article in English | MEDLINE | ID: mdl-38594145

ABSTRACT

The Frizzled family of transmembrane receptors (FZD1-10) belongs to the class F of G protein-coupled receptors (GPCRs). FZDs bind to and are activated by Wingless/Int1 (WNT) proteins. The WNT/FZD signaling system regulates crucial aspects of developmental biology and stem-cell regulation. Dysregulation of WNT/FZD communication can lead to developmental defects and diseases such as cancer and fibrosis. Recent insight into the activation mechanisms of FZDs has underlined that protein dynamics and conserved microswitches are essential for FZD-mediated information flow and build the basis for targeting these receptors pharmacologically. In this review, we summarize recent advances in our understanding of FZD activation, and how novel concepts merge and collide with existing dogmas in the field.


Subject(s)
Frizzled Receptors , Humans , Frizzled Receptors/metabolism , Animals , Wnt Signaling Pathway/drug effects , Wnt Proteins/metabolism
17.
Methods Mol Biol ; 2797: 351-362, 2024.
Article in English | MEDLINE | ID: mdl-38570472

ABSTRACT

KRAS mutations occur in approximately ~50% of colorectal cancers (CRCs) and are associated with poor prognosis and resistance to therapy. While these most common mutations found at amino acids G12, G13, Q61, and A146 have long been considered oncogenic drivers of CRC, emerging clinical data suggest that each mutation may possess different biological functions, resulting in varying consequences in oncogenesis. Currently, the mechanistic underpinnings associated with each allelic variation remain unclear. Elucidating the unique effectors of each KRAS mutant could both increase the understanding of KRAS biology and provide a basis for allele-specific therapeutic opportunities. Biotinylation identification (BioID) is a method to label and identify proteins located in proximity of a protein of interest. These proteins are captured through the strong interaction between the biotin label and streptavidin bead and subsequently identified by mass spectrometry. Here, we developed a protocol using CRISPR-mediated gene editing to generate endogenous BioID2-tagged KrasG12D and KrasG12V isogenic murine colon epithelial cell lines to identify unique protein proximity partners by BioID.


Subject(s)
Genes, ras , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Alleles , Biotin/chemistry , Streptavidin , Mutation
18.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625940

ABSTRACT

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Subject(s)
Carrier Proteins , Ubiquitin-Protein Ligases , Protein Binding , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Ubiquitin/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism
19.
JCI Insight ; 9(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530370

ABSTRACT

Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1ß levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.


Subject(s)
Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , GTP-Binding Protein alpha Subunits, Gq-G11 , Hypercalcemia , Mice, Knockout , Animals , Female , Male , Mice , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hypercalcemia/genetics , Hypercalcemia/congenital , Hypercalcemia/blood , Hypercalcemia/metabolism , Hypophosphatemia/genetics , Hypophosphatemia/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/blood , Liver/metabolism , Parathyroid Hormone/blood , Parathyroid Hormone/metabolism , Signal Transduction
20.
Cell Signal ; 118: 111138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467243

ABSTRACT

Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gßγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Signal Transduction , Signal Transduction/physiology , Receptors, G-Protein-Coupled/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Cell Membrane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...