Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Toxicol Rep ; 8: 1803-1813, 2021.
Article in English | MEDLINE | ID: mdl-34760624

ABSTRACT

Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.

2.
Toxicol Rep ; 7: 1551-1563, 2020.
Article in English | MEDLINE | ID: mdl-33294386

ABSTRACT

Phenylhydrazine (PHZ), an intermediate in the synthesis of fine chemicals is toxic for human health and environment. Despite of having severe detrimental effects on different physiological systems, exposure of erythrocytes to PHZ cause destruction of haemoglobin and membrane proteins leading to iron release and complete haemolysis of red blood cells (RBC). Involvement of oxidative stress behind such action triggers the urge for searching a potent antioxidant. The benefits of consuming olive oil is attributed to its 75% oleic acid (OA) content in average. Olive oil is the basic component of Mediterranean diet. Hence, OA has been chosen in our present in vitro study to explore its efficacy against PHZ (1 mM) induced alterations in erythrocytes. Four different concentrations of OA (0.01 nM, 0.02 nM, 0.04 nM and 0.06 nM) were primarily experimented with, among which 0.06 nM OA has shown to give maximal protection. This study demonstrates the capability of OA in preserving the morphology, intracellular antioxidant status and the activities of metabolic enzymes of RBCs that have been diminished by PHZ, through its antioxidant mechanisms. The results of the present study firmly establish OA as a promising antioxidant for conserving the health of erythrocyte from PHZ toxicity which indicate toward future possible use of OA either singly or in combination with other dietary components for protection of erythrocytes against PHZ induced toxic cellular changes.

3.
Toxicol Rep ; 6: 389-394, 2019.
Article in English | MEDLINE | ID: mdl-31080746

ABSTRACT

Indomethacin (IndoM) has prominent anti-inflammatory and analgesic-antipyretic properties. However, high incidence and severity of side-effects on the structure and functions of the kidney, liver and intestine limits its clinical use. The present study tested the hypothesis that IndoM causes multi-organ toxicity by inducing oxidative stress that alters the structure of various cellular membranes, metabolism and hence functions. The effect of IndoM was determined on the enzymes of carbohydrate metabolism, brush border membrane (BBM) and oxidative stress in the rat kideny, liver and intestine to understand the mechanism of IndoM induced toxicity. Adult male Wister rats were given IndoM (20 mg/kg) intra-peritoneally in sodium bicarbonate twice a day for 3 d. The body weights of the rats were recorded before and after experimental procedure. IndoM administration significantly increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but inorganic phosphate indicating IndoM induced renal, hepatic and intestinal toxicity. Activity of lactate dehydrogenase along with glucose-6- and fructose-1, 6-bis phosphatase, glucose-6-phosphate dehydrogenase and NADP-malic enzyme increased but malate dehydrogenase decreased in all tissues. Lipid peroxidation (LPO) significantly increased whereas the antioxidant enzymes decreased in all rat tissues studied. The results indicate that IndoM administration caused severe damage to kidney, liver and intestine by icreasing LPO, suppressing antioxidant enzymes and inhibiting oxidative metablolism. The energy dependence was shifted to anaerobic glycolysis due to mitochondrial damage supported by increased gluconeogenesis to provide more glucose to meet energy requirements.

4.
Arab J Urol ; 16(1): 35-43, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29713534

ABSTRACT

OBJECTIVES: To review the literature and provide an updated summary on the role of reactive oxygen species (ROS) in male infertility. METHODS: A review of PubMed, Cochrane review, and Web of Science databases for full-text English-language articles published between 1943 and 2017 was performed, focusing on the aetiology of ROS, physiological role of ROS on spermatic function, pathological role of ROS in infertility, evaluation of ROS, and role of antioxidants in oxidative stress. RESULTS: ROS play a role in spermatic function and fertilisation. The literature describes both a physiological and a pathological role of ROS in fertility. A delicate balance between ROS necessary for physiological activity and antioxidants to protect from cellular oxidative injury is essential for fertility. CONCLUSION: Although elevated levels of ROS are implicated as a cause of infertility, there is no consensus on selecting patients to test for ROS, which test to perform, or if treatment for ROS can have a positive impact on infertility rates and pregnancy.

5.
Br J Nutr ; 118(11): 906-913, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29173222

ABSTRACT

Conjugated linoleic acid (CLA) might regulate the lipid depots in liver and adipose tissue. As there is an association between maternal nutrition, fat depots and risk of offspring chronic disease, the aim was to investigate the effect of maternal CLA consumption on TAG regulation and some inflammatory parameters in adult male rat offspring receiving or not receiving CLA. Female Wistar rats were fed control (C) or CLA-supplemented (1 %, w/w) diets during 4 weeks before and throughout pregnancy and lactation. After weaning, male offspring of CLA rats were fed C or CLA diets (CLA/C and CLA/CLA groups, respectively), whereas C male rat offspring were fed a C diet (C/C group) for 9 weeks. Serum TAG levels were increased in the CLA/CLA and CLA/C groups, associated with a reduction of lipoprotein lipase activity and weights of adipose tissue. The liver TAG levels were decreased in the CLA/CLA group, related to a significant reduction of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and glucose-6-phosphate dehydrogenase enzyme activities, as well as to the mRNA levels of FAS, ACC, stearoyl-CoA desaturase-1 and sterol regulatory element-binding protein-1c. Even though normal TAG levels were found in the liver of CLA/C rats, a reduction of lipogenesis was also observed. Thus, these results demonstrated a programming effect of CLA on the lipid metabolic pathways leading to a preventive effect on the TAG accretion in adipose tissue and the liver of male rat offspring. This knowledge could be important to develop some dietary strategies leading to a reduced incidence of obesity and fatty acid liver disease in humans.


Subject(s)
Animal Nutritional Physiological Phenomena , Linoleic Acids, Conjugated/pharmacology , Triglycerides/blood , Triglycerides/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Diet , Dietary Fats/administration & dosage , Dietary Fats/blood , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/blood , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Male , Maternal Nutritional Physiological Phenomena , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
6.
Pract Lab Med ; 8: 86-94, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28856233

ABSTRACT

OBJECTIVE: Voriconazole is a triazole antifungal developed for the treatment of fungal infectious disease, and the clinical utility of its therapeutic drug monitoring has been evaluated. Recently, a new assay for analyzing the serum voriconazole concentration with an automated clinical chemistry analyzer was developed. We evaluated the performance of the new assay based on standardized protocols. METHODS: The analytical performance of the assay was evaluated according to its precision, trueness by recovery, limit of quantitation, linearity, and correlation with results from liquid chromatography-tandem mass spectrometry (LC-MS/MS). The evaluation was performed with the same protocol on two different routine chemistry analyzers. All evaluations were performed according to CLSI Guidelines EP15, EP17, EP6, and EP9 [1-4]. RESULTS: Coefficients of variation for within-run and between-day imprecision were 3.2-5.1% and 1.5-3.0%, respectively, on the two different analyzers for pooled serum samples. The recovery rates were in the range of 95.4-102.2%. The limit of blank was 0.0049 µg/mL, and the limit of detection of the samples was 0.0266-0.0376 µg/mL. The percent recovery at three LoQ levels were 67.9-74.6% for 0.50 µg/mL, 75.5-80.2% for 0.60 µg/mL, and 89.9-96.6% for 0.70 µg/mL. A linear relationship was demonstrated between 0.5 µg/mL and 16.0 µg/mL (R2 =0.9995-0.9998). The assay correlated well with LC-MS/MS results (R2 =0.9739-0.9828). CONCLUSIONS: The assay showed acceptable precision, trueness, linearity, and limit of quantification, and correlated well with LC-MS/MS. Therefore, its analytical performance is satisfactory for monitoring the drug concentration of voriconazole.

7.
Saudi Pharm J ; 25(3): 319-331, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28344485

ABSTRACT

Around the world, species from the genus Tilia are commonly used because of their peripheral and central medicinal effects; they are prepared as teas and used as tranquilizing, anticonvulsant, and analgesic agents. In this study, we provide evidence of the protective effects of organic and aqueous extracts (100 mg/kg, i.p.) obtained from the leaves of Tilia americana var. mexicana on CCl4-induced liver and brain damage in the rat. Protection was observed in the liver and brain (cerebellum, cortex and cerebral hemispheres) by measuring the activity of antioxidant enzymes and levels of malondialdehyde (MDA) using spectrophotometric methods. Biochemical parameters were also assessed in serum samples from the CCl4-treated rats. The T. americana var. mexicana leaf extracts provided significant protection against CCl4-induced peripheral and central damage by increasing the activity of antioxidant enzymes, diminishing lipid peroxidation, and preventing alterations in biochemical serum parameters, such as the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-globulin (γ-GLOB), serum albumin (ALB), total bilirubin (BB), creatinine (CREA) and creatine kinase (CK), relative to the control group. Additionally, we correlated gene expression with antioxidant activity in the experimental groups treated with the organic and aqueous Tilia extracts and observed a non-statistically significant positive correlation. Our results provide evidence of the underlying biomedical properties of T. americana var. mexicana that confer its neuro- and hepatoprotective effects.

8.
Br J Nutr ; 116(1): 7-18, 2016 07.
Article in English | MEDLINE | ID: mdl-27181335

ABSTRACT

The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.


Subject(s)
Docosahexaenoic Acids/pharmacology , Gene Expression Regulation/physiology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Swine/physiology , alpha-Linolenic Acid/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Docosahexaenoic Acids/administration & dosage , Fatty Acid Synthases/metabolism , Female , Male , alpha-Linolenic Acid/administration & dosage
9.
Toxicol Rep ; 3: 328-335, 2016.
Article in English | MEDLINE | ID: mdl-28959553

ABSTRACT

Cisplatin (CP) is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO) can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally) with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p.) respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

10.
Metab Eng Commun ; 3: 52-63, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29468113

ABSTRACT

13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.

11.
FEBS Open Bio ; 5: 908-15, 2015.
Article in English | MEDLINE | ID: mdl-26702395

ABSTRACT

Despite the lack of biochemical information, all available in silico metabolic models of Pseudomonas putida KT2440 consider NADP as the only cofactor accepted by the glucose-6-phosphate dehydrogenases. Because the Entner-Doudoroff pathway is the main glycolytic route in this bacterium, determining how much NADH and NADPH are produced in the reaction catalyzed by these enzymes is very important for the correct interpretation of metabolic flux distributions. To determine the actual cofactor preference of the glucose-6-phosphate dehydrogenase encoded by the zwf-1 gene (PputG6PDH-1), the major isoform during growth on glucose, we purified this protein and studied its kinetic properties. Based on simple kinetic principles, we estimated the in vivo relative production of NADH and NADPH during the oxidation of glucose-6-phosphate (G6P). Contrary to the general assumption, our calculations showed that the reaction catalyzed by PputG6PDH-1 yields around 1/3 mol of NADPH and 2/3 mol of NADH per mol of oxidized G6P. Additionally, we obtained data suggesting that the reaction catalyzed by the 6-phosphogluconate dehydrogenase is active during growth on glucose, and it also produces NADH. These results indicate that the stoichiometric matrix of in silico models of P. putida KT2440 must be corrected and highlight the importance of considering the physiological concentrations of the involved metabolites to estimate the actual proportion of NADH and NADPH produced by a dehydrogenase.

12.
Br J Nutr ; 114(8): 1143-56, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26306559

ABSTRACT

Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.


Subject(s)
Bass/metabolism , Cholesterol/blood , Diet/veterinary , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Lipid Metabolism , Animal Feed , Animals , Blood Glucose/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fish Oils/administration & dosage , Glucokinase/genetics , Glucokinase/metabolism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Plant Oils/administration & dosage , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Starch/administration & dosage , Starch/chemistry , Triglycerides/blood , Up-Regulation
13.
FEBS Open Bio ; 5: 369-77, 2015.
Article in English | MEDLINE | ID: mdl-25984442

ABSTRACT

The wound healing potency of an aqueous extract of placenta can be evaluated through the presence of numerous regulatory components. The presence of glycans was detected by thin layer chromatography and fluorophore-assisted carbohydrate electrophoresis. Mass spectrometric analysis revealed the existence of multiple fragments of immunoglobulin G (IgG). IgG was present in the extract at a concentration of 25.2 ± 3.97 µg/ml. IgG possesses anti-complementary activity by diverting the complement activation from target surface. Thus, effect of placental IgG on complement-bacteria interaction was investigated through classical and alternative pathway and the preparation was ascertained to be safe with respect to their interference in the process of bacterial opsonization.

14.
Toxicol Rep ; 1: 955-962, 2014.
Article in English | MEDLINE | ID: mdl-28962307

ABSTRACT

Canola oil (Can) and hydrogenated soybean oil (H2-Soy) are commonly used edible oils. However, in contrast to soybean oil (Soy), they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP) rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK) 1 in H2-Soy and unidentified component(s) in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP)-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC) and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC]) levels were significantly lower in the Can group than in the Soy group (p < 0.05). However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044) or was almost significantly lower (in H2-Soy; p = 0.053) than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s) among the three dietary groups.

15.
Article in English | MEDLINE | ID: mdl-24533305

ABSTRACT

Glycolysis is essential to Trypanosoma brucei, the causative agent of African sleeping sickness, suggesting enzymes in the pathway could be targets for drug development. Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one, EbSe) was identified in a screen as a potent inhibitor of T. brucei hexokinase 1 (TbHK1), the first enzyme in the pathway. EbSe has a history of promiscuity as an enzyme inhibitor, inactivating proteins through seleno-sulfide conjugation with Cys residues. Indeed, dilution of TbHK1 and inhibitor following incubation did not temper inhibition suggesting conjugate formation. Using mass spectrometry to analyze EbSe-based modifications revealed that two Cys residues (C327 and C369) were oxidized after treatment. Site-directed mutagenesis of C327 led to enzyme inactivation indicating that C327 was essential for catalysis. C369 was not essential, suggesting that EbSe inhibition of TbHK1 was the consequence of modification of C327 via thiol oxidation. Additionally, neither EbSe treatment nor mutation of the nine TbHK1 Cys residues appreciably altered enzyme quaternary structure.

SELECTION OF CITATIONS
SEARCH DETAIL