Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.776
Filter
1.
Biomed Chromatogr ; : e5979, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113379

ABSTRACT

Medicinal fungi Phellinus igniarius exhibited hypoglycemic effects; however, the protective mechanisms of P. igniarius on type 2 diabetes are not yet fully understood. Herein, the anti-diabetic effect of P. igniarius was investigated via gas chromatography-mass spectrometry (GC/MS)-based metabolome analysis. The rats were divided into normal group; model group; positive group; and groups treated with low, medium, and high dose of P. igniarius. After the treatments, a significant decrease in blood glucose concentration was observed. The levels of total cholesterol and triglyceride were dramatically decreased, whereas the level of insulin was increased. Multivariate statistical analysis revealed 31 differential endogenous metabolites between model group and normal group. A total of 14, 28, and 31 biomarkers were identified for low, medium, and high dose of P. igniarius treated groups, respectively. Twenty-one of the biomarkers were validated by using standard substances. The linear correlation coefficients ranged from 0.9990 to 1.0000. The methodology exhibited good repeatability, recoveries, and stability. The major intervened metabolic pathways covered glyoxylate and dicarboxylic acid metabolism; alanine, aspartate, and glutamate metabolism; and glycine, serine, and threonine metabolism. Our metabolome analysis has provided insights into the underlying mechanism of P. igniarius on type 2 diabetes.

2.
Article in English | MEDLINE | ID: mdl-39115787

ABSTRACT

Traditional medicinal plants have attracted scientific interest due to their bioactive compounds, and the levels of their constituents vary with location and altitude. The present study was designed to evaluate the pharmacological potential of two selected traditional medicinal plants, Mikania micrantha and Ageratum houstonianum collected from two sites, Murlen National Park (MNP) and Dampa Tiger Reserve (DTR), located at different altitudes. Both plant species are used by local traditional healers in Mizoram, Northeast India, to treat various health problems. We hypothesized that altitudinal variation would affect these plants' chemical composition and bioactive potential. Plant extracts were evaluated for antioxidant and cytotoxic activities. The results show that the plants located at a higher altitude, i.e., MNP, showed higher TPC (615.7 ± 0.58 and 453.80 ± 0.95 µg gallic acid equivalents/mg of plant extract dry weight (µg GAE/mg) for M. micrantha and A. houstonianum , respectively) and TFC (135.4 ± 0.46 and 120.66 ± 1.93 µg quercetin equivalents/mg of plant extract dry weight (µg GE/mg) for M. micrantha and A. houstonianum, respectively). The extract of A. houstonianum. (MNP) exhibited significantly greater antioxidant activity against ABTS radicals (IC50 241.6 µg/mL) as compared to the extract of A. houstonianum (DTR) (IC50 371.2 µg/mL). The composition of the bioactive compounds present in the plants was determined using UPLC-ESI MS/MS and GC/MS, which detected five and ten compounds in the A. houstonianum and M. micrantha extracts, respectively. Plant species collected from the Murlen National Park site had high bioactivity potential and contained several bioactive compounds. A distinct variation between the volatile and non-volatile compounds was revealed. The collective data in this study show the influence of altitude on the biological compound production of selected medicinal plants. The findings will be utilized in the plant material needed for developing bioactive formulations.

3.
Fitoterapia ; : 106147, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094699

ABSTRACT

The essential oil (EO) obtained from hemp (Cannabis sativa L.) biomass is rich of bioactive constituents and its oral administration can be valuable. In this paper two different hemp EOs were orally administered to CD1 mice. One EO, obtained from the fresh plant material resulted rich in monoterpenes (monoterpene rich oil, MRO) and the other, obtained from the dried biomass, contained mainly sesquiterpenes and CBD (sesquiterpene rich oil, SRO). The blood levels of the most abundant constituents were evaluated in the animals 30 and 90 min after oral administration of hemp EOs. Furthermore, compounds were also measured in brain, liver, kidney, spleen, and cecum content to evaluate their tissue distribution at the same times. Results showed the easy absorption and the ability of the major hemp EOs constituents to reach brain, liver, and kidney. Oral administration of MRO resulted in blood levels of monoterpenes in the range 45-115 ng/g at 30 min and significant tissue distribution with the detection of monoterpenes in brain, liver, and kidney. Oral administration of SRO resulted in blood levels, at 30 min, in the range 70-80 ng/g of sesquiterpenes and 139 ng/g of CBD. The compounds are still detectable in blood and brain 90 min after oral administration and significant concentrations of terpenoids are observed in liver and kidney. MRO and SRO can be considered as valuable sources of these bioactive compounds and further investigations are needed to evaluate the potential uses of hemp EO as constituent of innovative drug formulations.

4.
J Nat Med ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096421

ABSTRACT

This study established an Orthogonal Partial Least Squares (OPLS) model combining 1H-NMR and GC-MS data to identify characteristic metabolites in complex extracts. Both in metabolomics studies, and natural product chemistry, the reliable identification of marker metabolites usually requires laborious isolation and purification steps, which remains a bottleneck in many studies. Both ginger (GR) and processed ginger (PGR) are listed in the Japanese pharmacopeia. The plant of origin, the rhizome of Zingiber officinale Roscoe, is differently processed for these crude drugs. Notably, the quality of crude drugs is affected by genetic and environmental factors, making it difficult to maintain a certain quality standard. Therefore, characteristic markers for the quality control of GR and PGR are required. Metabolomic analysis using 1H-NMR was able to discriminate between GR and PGR, but there were unidentified signals that were difficult to distinguish based on NMR data alone. Therefore, we combined 1H-NMR and GC-MS analytical data to identify them by OPLS. As a result, αr-curcumene was found to be a useful marker for these identifications. This new approach enabled rapid identification of characteristic marker compounds and reduced the labor involved in the isolation process.

5.
J Chromatogr A ; 1732: 465208, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39088897

ABSTRACT

Piper gaudichaudianum Kunth essential oil (EO) is a natural source of bioactive components, having multiple therapeutic applications. Its chemical composition is highly variable, and strictly depends on abiotic factors, resulting in various biological activities. The present study details the utilization of multiple gas chromatographic techniques alongside nuclear magnetic resonance (NMR) spectroscopy to characterize the essential oil of Piper gaudichaudianum Kunth from Brazil. Seventy-six components were identified using GC-MS analysis, while enantio­selective multidimensional gas chromatography elucidated the enantiomeric distribution of eight chiral components, for the first time in the literature. Following GC-MS analysis, an unidentified component, constituting approximately 27 % of the total oil, prompted an isolation step through preparative gas chromatography. Through the combined use of nuclear magnetic resonance, GC-Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (MS), the unknown molecule was structurally identified as 4-[(3E)­dec-3-en-1-yl]phenol. Remarkably, it was identified as a known molecule, gibbilimbol B, and not previously listed in any MS database. Subsequently, the spectrum was included in a commercial library, specifically the FFNSC 4.0 MS database, for the first time.

6.
Fitoterapia ; : 106148, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089592

ABSTRACT

Ammi majus L. is a rich source of coumarins in addition to various flavonoids, alkaloids, and terpenoids. Medicinal products of Ammi majus seed, with sunlight exposure, are worldwide used for the treatment of vitiligo (pale-white patches on the skin). To increase the content of seed-coumarins and to investigate the physiological reasons in this respect, two net-house experiments were conducted using foliar-spray treatments (0, 25, 50, 100 and 200 mg L-1) of salicylic acid (SA) (Experiment 1) and putrescine (PUT) (Experiment 2). All studied parameters were improved due to the foliar application of both growth elicitors (SA and PUT). The best outcomes for SA and PUT were obtained at 50 mg L-1 which maximally increased the growth characteristics, physiological and biochemical attributes, and seed quality parameters. In comparison to the control, 50 mg L-1 of SA and PUT increased the chlorophyll content by 26.3% and 25.5%, carotenoid content by 31.4% and 18.5%. In addition 50 mg L-1 of both SA and PUT gives the best results of FTIR (Fourier Transform Infrared Spectrophotometer) & XRD (X-ray Diffraction) analysis. In GC-MS analysis, 50 mg L-1 of SA and PUT increases the Methoxsalen content (17.44 and 16.81%) and 7H-Furo[3,2-g]. Bown (1995) [1] Benzopyran-7-one, 4,9-dimethoxy content(14.92 and 13.93%) and p-camphorene content (13.11 and 12.27%) in contrast to the control. Other important constituents were Pimpinellin (6.31 and 4.08%), Bergapten (8.72 and 6.220, Isospathulenol (7.80 and 2.47), Octadecenoic acid (5.78 and 3.59) and Vitamin E (1.48 and 0.16).

7.
Article in English | MEDLINE | ID: mdl-39090295

ABSTRACT

Understanding the fates and impacts of microplastics requires information on their sizes, polymer types, concentrations, and spatial and temporal distributions. Here, we focused on large (LMPs, 500 µm to 5 mm) and small (SMPs, 25 to 500 µm) microplastics sampled with the exact same protocol in nine of the major European rivers during the seven months of the Tara Microplastic Expedition. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) analyses were used to determine the microplastics contents by number and mass. The median LMP concentration was 6.7 particles m-3, which was lower than those in other regions of the world (America and Asia). The SMP mass concentration was much higher to the LMP concentrations, with SMP/LMP ratios up to 1000 in some rivers. We did not observe a systematic positive effect of urban areas for the two size classes or polymers; this could be explained by the fact that the transport of microplastic is highly heterogeneous in rivers. We believe that this study has important implications for predictive models of plastics distribution and fate in aquatic environments.

8.
Article in English | MEDLINE | ID: mdl-39092648

ABSTRACT

BACKGROUND: Ballota acetabulosa native to the Mediterranean region, belonging to the Lamiaceae family, holds significance in folk medicine. Externally, it is applied for treating cuts and burns, while internally, it is utilized to alleviate inflammation, suppress cough, and address gastrointestinal issues. METHODS: This study aimed to investigate the chemical composition of the essential oil of Ballota acetabulosa and to evaluate the antioxidant capacity of the essential oil, as well as the aqueous and ethanolic extracts of the plant. Essential oil analysis was performed using Gas Chromatography- Mass Spectrometry (GC-MS), while 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and inhibition of lipid peroxidation assays were applied to the essential oil, water, and ethanol extracts of the plant. RESULTS: Spathulenol was found to be the predominant constituent of the essential oil, comprising 25.03% of the oil. Compared to the control group (Propyl gallate for DPPH, IC50 0.109; BHT for inhibition of lipid peroxidation, IC50 0.133), the essential oil was found to have insignificant antioxidant activity (IC50 value 10.395 mg/mL for DPPH, 1.051 mg/mL for inhibition of lipid peroxidation). Moreover, ethanolic extract (IC50 value 1.583 mg/mL for DPPH, 0.029 mg/mL for inhibition of lipid peroxidation) exerted more antioxidant activity than aqueous extract (IC50 value 1.9017 mg/mL for DPPH, 0.161 mg/mL for inhibition of lipid peroxidation). CONCLUSION: Hitherto, this is the earliest report on the composition and activity of the essential oil Ballota acetabulosa. However, further investigation of different antioxidant capacity assays is suggested to highlight potential variations in mechanisms of action and subsequent results. Everything considered, this study advances the comprehension of the chemical composition and possible therapeutic uses of Ballota acetabulosa, highlighting the need for more research into its uses.

9.
Int J Legal Med ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103637

ABSTRACT

Necrophagous flies, particularly blowflies, serve as vital indicators in forensic entomology and ecological studies, contributing to minimum postmortem interval estimations and environmental monitoring. The study investigates variations in the predominant cuticular hydrocarbons (CHCs) viz. n-C25, n-C27, n-C28, and n-C29 of empty puparia of Calliphora vicina Robineau-Desvoidy, 1830, (Diptera: Calliphoridae) across diverse environmental conditions, including burial, above-ground and indoor settings, over 90 days. Notable trends include a significant decrease in n-C25 concentrations in buried and above-ground conditions over time, while n-C27 concentrations decline in buried and above-ground conditions but remain stable indoors. Burial conditions show significant declines in n-C27 and n-C29 concentrations over time, indicating environmental influences. Conversely, above-ground conditions exhibit uniform declines in all hydrocarbons. Indoor conditions remain relatively stable, with weak correlations between weathering time and CHC concentrations. Additionally, machine learning techniques, specifically Extreme Gradient Boosting (XGBoost), are employed for age estimation of empty puparia, yielding accurate predictions across different outdoor and indoor conditions. These findings highlight the subtle responses of CHC profiles to environmental stimuli, underscoring the importance of considering environmental factors in forensic entomology and ecological research. The study advances the understanding of insect remnant degradation processes and their forensic implications. Furthermore, integrating machine learning with entomological expertise offers standardized methodologies for age determination, enhancing the reliability of entomological evidence in legal contexts and paving the way for future research and development.

10.
Article in English | MEDLINE | ID: mdl-39105309

ABSTRACT

Organochlorine, organophosphate, triazole, and strobilurin pesticides were determined in fish samples. Relative standard deviations lower than 9.3% were obtained for organochlorine pesticides and 10.8% for other pesticides. Accuracy ranged from 73% to 119% for organochlorine pesticides and 80.4% to 116% for organophosphate, triazole, and strobilurin pesticides. A total of 28 pesticides were analysed and 7 of them were detected (exceeding 10 µg/kg) in some samples, with the highest concentration recorded at 68.5 µg/kg, corresponding to heptachlor epoxide A. The pesticide most frequently detected was ß HCH, found in 30 of the 100 analysed samples. Hazard Quotient values were estimated for men, women, and children. These values exceeded 1 for heptachlor epoxide in women and children, as well as for endrin in children. These findings emphasise the need for stricter controls to reduce fish contamination and mitigate health risks.

11.
Article in English | MEDLINE | ID: mdl-39106010

ABSTRACT

Phthalic acid esters (PAEs) are emerging pollutants that need to be analyzed precisely. Chromatography-based determination of PAE content in soils are frequently affected by matrix effect, which may limit the quantification of different kinds of PAEs from different types of soil. Here we optimized a QuEChERS protocol combined with gas chromatography-mass spectrometry (GC-MS) for simultaneous determination of 16 PAEs in different soils. PAEs in different type of soils (fluvo-aquic soil, red soil, and black soil) were extracted with acetonitrile followed by GC-MS detection based on quantitative ion internal standard method. All 16 PAEs showed excellent linear relationships with mass peak areas (R2 > 0.99). The limits of detection (LOD) and limits of quantitation (LOQ) of all the samples were in the range of 0.91-66.97 µg/kg and 2.7-200.9 µg/kg, respectively. The accurate test at 0.5, 0.1, and 1.0 mg/kg spiking level recorded recovery rate between 80.11% and 100.99% with relative standard deviations (RSDs) ranging from 0.37 to 8.50% in tested matrices. No significant matrix effect was observed for most tested PAEs. This is a simple method with high sensitivity and strong stability, which is suitable and reproducible for quantifying large number of PAEs in different types of soil.

12.
J Adv Vet Anim Res ; 11(2): 237-246, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39101096

ABSTRACT

Objective: Research has demonstrated that Leptospermum scoparium possesses various therapeutic benefits. This study set out to determine whether or not L. scoparium extracts had any effect on the ability of HepG2 and MCF-7 breast cancer cells to survive. Materials and Methods: The antiproliferative activity of L. scoparium extracts was explored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. The most active fraction was selected to investigate its effects on apoptosis induction using flow cytometry and quantitative real-time polymerase chain reaction. The constituents of this fraction were characterized using GC-MS analysis. Results: Research demonstrated that the chloroform fraction of L. scoparium (LSCF) significantly impacted the HepG2 and MCF-7 cancer cell lines. Treatment with LSCF led to a notable rise in both early and late apoptotic cells. Furthermore, there was an upregulation in the mRNA levels of P53, Bax, and caspases, while the expression of Bcl-2 mRNA saw a decrease. The analysis of LSCF revealed the primary components to be cis-calamenene, beta-eudesmol, cyclododecane, and alpha-muurolene. Conclusion: The study showed the promising antiproliferative activity of L. scoparium, suggesting its potential application for cancer treatment.

13.
Front Microbiol ; 15: 1429035, 2024.
Article in English | MEDLINE | ID: mdl-39104582

ABSTRACT

The alarming rise in antimicrobial resistance (AMR) has created a significant public health challenge, necessitating the discovery of new therapeutic agents to combat infectious diseases and oxidative stress-related disorders. The Lentzea flaviverrucosa strain E25-2, isolated from Moroccan forest soil, represents a potential avenue for such research. This study aimed to identify the isolate E25-2, obtained from soil in a cold Moroccan ecosystem, and further investigate its antimicrobial and antioxidant activities. Phylogenetic analysis based on 16S rRNA gene sequences revealed the strain's classification within the Lentzea genus, with a sequence closely resembling that of Lentzea flaviverrucosa AS4.0578 (96.10% similarity). Antimicrobial activity in solid media showed moderate to strong activity against Staphylococcus aureus ATCC 25923, Bacillus cereus strain ATCC 14579, Escherichia coli strain ATCC 25922, Candida albicans strain ATCC 60193 and 4 phytopathogenic fungi. In addition, ethyl acetate extract of this isolate demonstrated potent antimicrobial activity against 7 clinically multi-drug resistant bacteria. Furthermore, it demonstrated antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, as well as a significant increase in ferric reducing antioxidant power. A significant positive correlation was observed between antioxidant activities and total content of phenolic compounds (p < 0.0001), along with flavonoids (p < 0.0001). Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of amines, hydroxyl groups, pyridopyrazinone rings, esters and pyrrolopyrazines. The Lentzea genus could offer promising prospects in the fight against antibiotic resistance and in the prevention against oxidative stress related diseases.

14.
Front Nutr ; 11: 1409008, 2024.
Article in English | MEDLINE | ID: mdl-39104760

ABSTRACT

Volatile sulfur compounds (VSCs) are not only important for their therapeutic potential but also significantly influence the flavor profiles of agricultural products. VSCs exhibit various chemical structures due to their stability and volatility, and they may form or be altered as a result of enzymatic and chemical reactions during storage and cooking. This study has focused on profiles of VSCs in 58 different vegetable samples by using HS-SPME-GC/MS technique and chemometric analyses. The validation was carried out using cabbage juice as a vegetable matrix for VSCs analysis, showing satisfactory repeatability (RSD 8.07% ~ 9.45%), reproducibility (RSD 4.22% ~ 7.71%), accuracy and specificity. The established method was utilized on various vegetables, revealing that 21 VSCs such as sulfides, disulfides, trisulfides, isothiocyanates, sulfhydryls, and thiophenes were successfully identified and quantified. These compounds were found in a range of vegetables including Allium species, Cruciferae, Capsicum species, green leafy vegetables, and mushrooms. In particular, isocyanate and allyl groups were abundant in Cruciferae and Allium vegetables, respectively. Cooking conditions were shown to reduce the levels of certain sulfur compounds such as dimethyl sulfide and dimethyl trisulfide in vegetables like broccoli and cabbage, suggesting that heat treatment can lead to the volatilization and reduction of these compounds. The present study provides reliable insights into the compositions of VSCs in various vegetables and examines the changes induced by different cooking methods.

15.
MethodsX ; 13: 102853, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39105090

ABSTRACT

Phenolic compounds, abundant secondary metabolites in plants, profoundly influence soil ecosystems, plant growth, and interactions with herbivores. Phenolic in soil microorganisms have the potential to impact a wide range of activities in plant-soil interactions. However, the existing methods for measuring microbial activity are typically time-consuming, intricate, and expensive. In this study, we propose modifications to the method used for the extraction and quantification of various types of phenolics in soil and plant tissues. There have been substantial advancements in research aimed at extracting, identifying, and quantifying phenolic compounds in the plant and soil samples. This study discusses the use of different methodologies in the analysis of phenolic compounds. In addition, we investigated the effect of phenolics on plant growth and cues in gall-forming under environmental disturbances.•This method is the optimum way to extract phenolic from soil and microbial activity in bulk and rhizosphere soil.•It can be used on any soil type and plant tissue, metabolites extracted from living organisms.

16.
Environ Sci Technol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106281

ABSTRACT

The photodegradation of macroplastics in the marine environment remains poorly understood. Here, we investigated the weathering of commercially available plastics (tabs 1.3 × 4.4 × 0.16 cm), including high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, and polycarbonate, in seawater under laboratory-simulated ultraviolet A radiation for 3-9 months, equivalent to 25-75 years of natural sunlight exposure without considering other confounding factors. After the exposure, the physical integrity and thermal stability of the tabs remained relatively intact, suggesting that the bulk polymer chains were not severely altered despite strong irradiation, likely due to their low specific surface area. In contrast, the surface layer (∼1 µm) of the tabs was highly oxidized and eroded after 9 months of accelerated weathering. Several antioxidant additives were identified in the plastics through low temperature pyrolysis coupled with gas chromatography/mass spectrometry (Pyr-GC/MS) analysis. The Pyr-GC/MS results also revealed many new oxygen-containing compounds formed during photodegradation, and these compounds indicated the dominance of chain scission reactions during weathering. These findings highlight the strong resistance of industrial macroplastics to weathering, emphasizing the need for a broader range of plastics with varying properties and sizes to accurately estimate plastic degradation in the marine environment.

17.
Phytochem Anal ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108034

ABSTRACT

INTRODUCTION: Magnoliae officinalis cortex (MOC) is an important traditional Chinese medicine (TCM), and both raw and stir-fried MOC were commonly used in clinic. OBJECTIVES: This study aimed to discriminate MOC and MOC stir-fried with ginger juice (MOCG) using an integrated approach combining liquid chromatography/mass spectrometry (LC/MS), gas chromatography/mass spectrometry (GC/MS), intelligent sensors, and chemometrics. METHODS: The sensory characters of the samples were digitalized using intelligent sensors, i.e., colorimeter, electronic nose, and electronic tongue. Meanwhile, the chemical profiles of the samples were analyzed using LC/MS and GC/MS methods. Chemometric models were constructed to discriminate samples of MOC and MOCG based on not only the sensory data but also the chemical data. RESULTS: The differential sensory characters (L* and b* from colorimeter, ANS from electronic tongue, W1S and W2S from electronic nose) and the differential chemical compounds (26 and 11 compounds from LC/MS and GC/MS, respectively) were discovered between MOC and MOCG. Furthermore, twelve differential compounds showed good relations with differential sensory characters. Finally, artificial neural network models were established to discriminate samples of MOC and MOCG, in which W1S, W2S, ANS, b*, and 10 differential compounds were among the top 10 important variables, respectively. CONCLUSION: Samples of MOC and MOCG can be discriminated not only by the digitalized data of color, taste, and scent detected by intelligent sensors but also by chemical information obtained from LC/MS and GC/MS using chemometrics. The variations in sensory characters and chemical compounds between MOC and MOCG partially resulted from the Maillard reaction products and the oxidation of some compounds in the stir-frying process.

18.
Drug Dev Ind Pharm ; : 1-56, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110842

ABSTRACT

Objective This study investigates the biological activities of Rhododendron arboreum Sm from the eastern Himalayas, addressing a literature gap on its properties. It explores the plant's phytochemical, antioxidant, and medicinal characteristics. Significance: Evaluating methanolic extracts of R. arboreum offers valuable insights into its bioactive potential. Comprehensive GC-MS analysis identified a diverse array of compounds, highlighting the plant's chemical composition. Methods: Methanolic leaf and flower extracts underwent sequential extraction and phytochemical profiling using column chromatography, TLC, and GC-MS analysis. Spectral studies aided compound identification, and antioxidant activity was assessed via spectrophotometric assays. Results: Column chromatography separated methanol leaf and flower extracts into 17 and 24 distinct fractions, respectively. TLC analysis showed specific Rf values for leaf (0.58, 0.65, 0.75, 0.8, 0.86, 0.9) and flower samples (0.91, 0.38, 0.48, 0.51, 0.56, 0.6, 0.65, 0.75, 0.85, 0.96). GC-MS analysis revealed a variety of organic functional groups, including aliphatic hydrocarbons, aromatic compounds, heterocyclic molecules, phenolic compounds, steroids, terpenoids, alcohols, esters, and other bioactive compounds. FTIR spectra identified functional groups such as hydroxyls, primary amines, alkanes, and alkynes. NMR data indicated a complex molecular composition with diverse proton environments. Leaf extracts demonstrated superior antioxidant activity compared to flower extracts in DPPH, ABTS, hydrogen peroxide scavenging, lipid peroxidation inhibition, and FRAP assays. Conclusion: The study identifies diverse phytochemicals in R.arboreum extracts and highlights their potential applications in pharmaceuticals, nutraceuticals, and functional foods, owing to the superior antioxidant activity of leaf extracts compared to flowers.

19.
Food Chem ; 459: 140352, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991447

ABSTRACT

In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 µg/L and had low limits of detection (0.013-0.018 µg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.

20.
Turk J Pharm Sci ; 21(3): 243-251, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994865

ABSTRACT

Objectives: Lichens are complex symbiotic organisms that generate various bioactive compounds with significant therapeutic value. We investigated the chemical composition and bioactivity of the acetone extract of the Algerian lichen Physconia venusta (Ach.) poet. Materials and Methods: Phytochemical screening was performed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was assessed against Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Salmonella typhi, Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis using an agar diffusion test with the determination of the minimal inhibition concentration (MIC), while the antioxidant activity was determined using different chemical methods (DPPH, ABTS, CUPRAC, reducing power, superoxide anion scavenging, ß-carotene bleaching, and metal chelate). In addition, cytotoxic activity was tested using Artemia salina (Brine shrimp) bioassay. Results: The studied extract exhibited intense antibacterial activity against E. coli and S. aureus with inhibition diameters of 28 ± 0.01 and 22 ± 0.01 mm, respectively, with a MIC value of 6.25 mg/mL and a selectivity index of 2.8. The obtained extract showed different antioxidant trends depending on the selected assay. GC-MS analysis revealed many secondary metabolites. Conclusion: P. venusta, a type of lichen, is a potential source of bioactive substances that could be used in pharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...