Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Front Immunol ; 15: 1405597, 2024.
Article in English | MEDLINE | ID: mdl-38983846

ABSTRACT

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Subject(s)
Complement C1q , Endometriosis , Neovascularization, Pathologic , Endometriosis/metabolism , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/genetics , Complement C1q/genetics , Complement C1q/metabolism , Humans , Female , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Endothelial Cells/metabolism , Endothelial Cells/immunology , Endometrium/immunology , Endometrium/metabolism , Endometrium/pathology , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured , Adult , Cell Proliferation
2.
Endocrine ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824220

ABSTRACT

Male cases diagnosed COVID-19 with more complications and higher mortality compared with females, and the overall consequences of male sex hormones and semen parameters deterioration were observed in COVID-19 patients, whereas the involvement and mechanism for spermatogenic cell remains unclear. The study was aimed to investigate the infection mode of S protein (D614G) pseudovirus (pseu-S-D614G) to spermatogenic cells, as well as the influence on cell growth. Both mouse spermatogonia (GC-1 cell, immortalized spermatogonia) and spermatocyte (GC-2 cell, immortalized spermatocytes) were used to detect the infection of pseu-S-D614G of SARS-CoV-2, and further explored the effect of SARS-CoV-2-spike protein (S-protein) and SARS-CoV-2-spike protein (omicron) (O-protein) on GC-1 cell apoptosis and proliferation. The data showed that the pseu-S-D614G invaded into GC-1 cells through either human ACE2 (hACE2) or human CD147 (hCD147), whereas GC-2 cells were insensitive to viral infection. In addition, the apoptosis and proliferation suppression inflicted by S-protein and O-protein on GC-1 cells was through Bax-Caspase3 signaling rather than arresting cell cycle progression. These findings suggest that CD147, apart from ACE2, may be a potential receptor for SARS-CoV-2 infection in testicular tissues, and that the apoptotic effect was induced in spermatogonia cells by S-protein or O-protein, eventually resulted in the damage to male fertility.

3.
Food Chem Toxicol ; 189: 114746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768936

ABSTRACT

Diesel exhaust particle (DEP) exposure induces a variety of toxicological effects through oxidative stress and inflammation responses. This research investigated the mechanisms underlying DEP-induced GC-1spg cells oxidative stress by examining ROS accumulation, antioxidant defense systems activation, mitochondrial dysfunction, and the Nrf2/Keap1/HO-1 pathway response. Subsequently, we further evaluated the ATP levels, ATP5α synthase activity and ATP5α synthase S-sulfhydrated modification in DEP-exposed GC-1 spg cells. The results showed that DEP exposure significantly inhibited cell proliferation and viability, increased intracellular ROS production, decreased MMP, down-regulated antioxidant capacity, activated the Nrf2/Keap1/HO-1 pathway. However, DEP-induced oxidative stress was partially alleviated by GSH and exogenous H2S. In addition, DEP exposure induced ATP depletion and ATP5α synthase inactivity in GC-1 spg cells, accompanied by ATP5α synthase S-sulfhydrated modification. In conclusion, our research showed that DEP may incapacitate mitochondria through oxidative stress injury, leading to GC-1 spg cells oxidative stress. This process may be associated with the reduction of ATP5α1 S-sulfhydrated modification. It provides a new perspective for the research of the mechanism related to male reproductive toxicity due to air pollution.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Oxidative Stress , Particulate Matter , Vehicle Emissions , Oxidative Stress/drug effects , Vehicle Emissions/toxicity , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Particulate Matter/toxicity , Mitochondrial Proton-Translocating ATPases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Cell Survival/drug effects , Adenosine Triphosphate/metabolism , Cell Proliferation/drug effects
4.
J Ethnopharmacol ; 331: 118305, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38729536

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coptidis rhizoma, first recorded in the "Shen Nong's Herbal Classic", is one of the traditional Chinese medicine (TCM) used to treat infectious diseases, with reputed effectiveness against oropharyngeal candidiasis (OPC). Studies have demonstrated the inhibitory properties of C. rhizoma (CRE) against Candida albicans, yet there is limited information available regarding its treatment mechanism for OPC. AIM OF THE STUDY: Our previous research has suggested that CRE can prevent the formation of C. albicans hyphae and their invasion of the oral mucosa, thereby exerting a therapeutic effect on OPC. Nevertheless, the precise therapeutic mechanisms remain incompletely understood. Previous studies have revealed that a receptor for globular heads of C1q (gC1qR), a crucial co-receptor of the epidermal growth factor receptor (EGFR), facilitates the EGFR-mediated internalization of C. albicans. Therefore, this study aims to investigate the potential mechanism of action of CRE and its primary component, berberine (BBR), in treating OPC by exploring their effects on the gC1qR-EGFR co-receptor. MATERIALS AND METHODS: To identify the chemical components of CRE, we utilized Ultra-high performance liquid chromatography in conjunction with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), revealing the presence of at least 18 distinct components. To observe the therapeutic effects of CRE on OPC at the animal level, we employed hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and fungal load detection. Subsequently, we evaluated the anti-inflammatory properties of CRE and its main component, BBR, in treating OPC. This was achieved through enzyme-linked immunosorbent assay (ELISA) both at the animal and cellular levels. Additionally, we assessed the ability of C. albicans to disrupt the epithelial barrier of FaDu cells by studying the protective effects of BBR on the fusion barrier using the transwell assay. To further explore the underlying mechanisms, we analyzed the effects of BBR on the gC1qR-EGFR/extracellular signal-regulated kinase/c-Fos signaling pathway at the cellular level using qRT-PCR, western blotting, and immunofluorescence. Furthermore, we validated the effects of BBR on the gC1qR-EGFR co-receptor through ELISA, qRT-PCR, and western blotting. Finally, to confirm the outcomes observed at the cellular level, we validated the impact of CRE on the gC1qR-EGFR co-receptor in vivo using qRT-PCR, western blotting, and immunofluorescence. These comprehensive methods allowed us to gain a deeper understanding of the therapeutic mechanisms of CRE and BBR in treating OPC. RESULTS: Our findings indicate that CRE and its primary component, BBR, effectively alleviated the symptoms of OPC by modulating the gC1qR-EGFR co-receptor. The chemical composition of CRE and BBR was accurately identified using UPLC-Q/TOF-MSE. The gC1qR-EGFR co-receptor plays a crucial role in regulating downstream signaling pathways, emerging as a potential therapeutic target for OPC treatment. Through both in vitro and in vivo experiments, we explored the therapeutic potential of CRE and BBR in OPC. Additionally, we employed overexpression and silencing techniques to confirm that BBR can indeed influence the gC1qR-EGFR co-receptor and regulate the gC1qR-EGFR/extracellular signal-regulated kinase (ERK)/c-Fos signaling pathway, leading to improved OPC outcomes. Furthermore, the significance of CRE's effect on the gC1qR-EGFR co-receptor was validated in vivo. CONCLUSION: Our study demonstrates that CRE and its main component, BBR, can effectively alleviate OPC symptoms by targeting the gC1qR-EGFR heterodimer receptor. This discovery offers a promising new therapeutic approach for the treatment of OPC.


Subject(s)
Candida albicans , Candidiasis, Oral , Drugs, Chinese Herbal , Epithelial Cells , ErbB Receptors , ErbB Receptors/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Candidiasis, Oral/drug therapy , Candida albicans/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Berberine/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Mice , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Antifungal Agents/pharmacology , Male , Cell Line , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Coptis chinensis
5.
Front Immunol ; 15: 1351656, 2024.
Article in English | MEDLINE | ID: mdl-38711524

ABSTRACT

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Subject(s)
Carrier Proteins , Complement C1q , Immune Checkpoint Inhibitors , Membrane Glycoproteins , Mitochondrial Proteins , Neoplasms , Receptors, Complement , Humans , Complement C1q/metabolism , Complement C1q/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Complement/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/immunology
6.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668183

ABSTRACT

Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.

7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473963

ABSTRACT

The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.


Subject(s)
Colonic Neoplasms , Cytostatic Agents , Humans , Cytostatic Agents/pharmacology , Mitogens/pharmacology , Signal Transduction , Mitochondrial Proteins/metabolism , Cell Proliferation , Carrier Proteins/metabolism
8.
Front Allergy ; 5: 1302605, 2024.
Article in English | MEDLINE | ID: mdl-38332896

ABSTRACT

Anaphylaxis is a potentially life-threatening multi-system allergic reaction to a biological trigger resulting in the release of potent inflammatory mediators from mast cells and basophils and causing symptoms in at least two organ systems that generally include skin, lungs, heart, or gastrointestinal tract in any combination. One exception is profound hypotension as an isolated symptom. There are two types of triggers of anaphylaxis: immunologic and non-Immunologic. Immunologic anaphylaxis is initiated when a foreign antigen directly binds to IgE expressed on mast cells or basophils and induces the release of histamine and other inflammatory substances resulting in vasodilation, vascular leakage, decreased peripheral vascular resistance, and heart muscle depression. If left untreated, death by shock (profound hypotension) or asphyxiation (airway obstruction) can occur. The non-immunologic pathway, on the other hand, can be initiated in many ways. A foreign substance can directly bind to receptors of mast cells and basophils leading to degranulation. There can be immune complex activation of the classical complement cascade with the release of anaphylatoxins C3a and C5a with subsequent recruitment of mast cells and basophils. Finally, hyperosmolar contrast agents can cause blood cell lysis, enzyme release, and complement activation, resulting in anaphylactoid (anaphylactic-like) symptoms. In this report we emphasize the recruitment of the bradykinin-forming cascade in mast cell dependent anaphylactic reactions as a potential mediator of severe hypotension, or airway compromise (asthma, laryngeal edema). We also consider airway obstruction due to inhibition of angiotensin converting enzyme with a diminished rate of endogenous bradykinin metabolism, leading not only to laryngeal edema, but massive tongue swelling with aspiration of secretions.

9.
Genes Genomics ; 46(3): 279-287, 2024 03.
Article in English | MEDLINE | ID: mdl-38291311

ABSTRACT

BACKGROUND: Spermatogenesis is a tightly organized process that utilizes an intrinsic genetic program composed of germ cell-specific genes. Although mouse germ cell-related cell lines are available, few germ cell-specific genes have been comprehensively identified in such cell lines. OBJECTIVE: We aimed to profile gene expression in the male mouse germ cell-related cell lines, GC-1 and GC-2, characterize their transcriptomic nature, and identify potential testis- or germ cell-specific or -predominant genes expressed in these cell lines. METHODS: We performed profiling analysis of genes transcribed in the mouse germ cell-related cell lines, GC-1 and GC-2, using our previous microarray data together with public transcriptome information. We analyzed the expression of a number of the cell line genes predicted to be preferentially expressed in testis by RT-PCR. RESULTS: We found that most testis-specific or -predominant mRNAs are not expressed in GC-1 and GC-2 cells, implying that these cell lines have lost their testis- or germ cell-specific genetic characteristics. RT-PCR analysis of genes predicted to be expressed in the cell lines with preferential testicular expression showed the testis-specific or -predominant expression of nine genes and verified four of them as being expressed in the germ cell lines. Among them, only cyclin-dependent kinase inhibitor 3 genes (Cdkn3) showed testis and germ cell specificity. CONCLUSION: Our study provides extensive transcriptomic information to shed light on the limited testicular characteristics of the mouse male germ cell-derived cell lines, GC-1 and GC-2, and offers a list of germ cell line genes with testicular preference.


Subject(s)
Acetates , Phenols , Spermatogenesis , Testis , Mice , Animals , Male , Testis/metabolism , Spermatogenesis/genetics , Gene Expression Profiling , Cell Line
10.
Food Chem Toxicol ; 184: 114387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123059

ABSTRACT

Diisobutyl phthalate (DiBP) is a commonly used plasticizer in manufacturing consumer and industrial products to improve flexibility and durability. Despite of the numerous studies, however, the direct mechanism underlying the male reproductive damage of DiBP is poorly understood. In this study, we investigated the male germ cell toxicity of DiBP using GC-1 spermatogonia (spg) cells. Our results indicated that DiBP exposure causes oxidative stress and apoptosis in GC-1 spg cells. In addition, DiBP-derived autophagy activation and down-regulation of phosphoinositide 3-kinase (PI3K)-AKT and extracellular signal-regulated kinase (ERK) pathways further inhibited GC-1 spg cell proliferation, indicating that DiBP can instigate male germ cell toxicity by targeting several pathways. Importantly, a combined treatment of parthenolide, N-acetylcysteine, and 3-methyladenine significantly reduced DiBP-induced male germ cell toxicity and restored proliferation. Taken together, the results of this study can provide valuable information to the existing literature by enhancing the understanding of single phthalate DiBP-derived male germ cell toxicity and the therapeutic interventions that can mitigate DiBP damage.


Subject(s)
Acetates , Dibutyl Phthalate , Phenols , Phosphatidylinositol 3-Kinases , Humans , Male , Dibutyl Phthalate/toxicity , Germ Cells
11.
Biol Trace Elem Res ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079059

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) can result in the reduction of sperm numbers, but the mechanisms have not been well elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on cell cycle and apoptosis in spermatogonia and to explore the role of PI3K/AKT/mTOR signaling pathway in this process. The mouse spermatogonia cell line (GC-1) was treated with TiO2 NPs at different concentrations (0, 25, 50, 75 and 100 µg/mL) for 24 h to detect cell viability, cell cycle, apoptosis, and key proteins related to cell cycle and PI3K/AKT/mTOR signaling pathway. The agonist (IGF-1) and inhibitor (LY294002) of PI3K were used to verify the role of PI3K/AKT/mTOR signaling pathway in cell cycle and apoptosis. TiO2 NPs significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and resulted in apoptosis. TiO2 NPs downregulated the levels of cyclin-dependent kinases (CDKs) and cyclins, including CDK4, CDK2, Cyclin D1 and Cyclin E1, while upregulated the levels of p21 and p53 proteins. Furthermore, TiO2 NPs inhibited the PI3K/AKT/mTOR signaling pathway by decreasing the levels of p-PI3K, p-AKT and p-mTOR. IGF-1 reversed the G0/G1 phase arrest and apoptosis caused by TiO2 NPs. However, LY294002 aggravated the G0/G1 phase arrest and apoptosis resulting from TiO2 NPs. Collectively, TiO2 NPs induced cell cycle arrest at G0/G1 phase and apoptosis through inhibiting the activation of PI3K/AKT/mTOR pathway, which could be the main reason for the reduction in sperm numbers caused by TiO2 NPs.

12.
Toxicology ; 499: 153651, 2023 11.
Article in English | MEDLINE | ID: mdl-37858773

ABSTRACT

Particulate matter (PM) generated by environmental and air pollution is known to have detrimental effects on human health. Among these, PM2.5 particles (diameter < 2.5 µm) can breach the alveolar-capillary barrier and disseminate to other organs, posing significant health risks. Numerous studies have shown that PMs can harm various organs, including the reproductive system. Therefore, this study aimed to investigate the harmful effects of PM2.5 on mouse GC-1 spermatogonia cells (GC-1 spg cells) and to verify the ameliorative effects of parthenolide (PTL) treatment on damaged GC-1 spg cells. We observed a significant dose-dependent reduction in cell proliferation after PM2.5 concentration of 2.5 µg/cm2. Additionally, treatment with 20 µg/cm2 PM2.5 concentration significantly increased the expression of autophagy-related proteins ATG7, the ratio of LC3-II/LC3-I, and decreased phosphorylation of PI3K and AKT. Furthermore, PM2.5 exposure augmented inflammation mediator gene expressions, the phosphorylation of the inflammation-related transcription factor NF-κB p65 at Ser536, and ubiquitination. Treatment of PM2.5-exposed GC-1 spg cells with PTL significantly reduced NF-κB p65 phosphorylation and the expression of autophagy-related proteins ATG7 and LC3-II, leading to a statistically significant recovery in cell proliferation. Together, our findings elucidated the detrimental effects of PM2.5 exposure on male germ cells, and the restorative properties of PTL against air pollutants.


Subject(s)
NF-kappa B , Signal Transduction , Humans , Male , Mice , Animals , NF-kappa B/metabolism , Spermatogonia/metabolism , Particulate Matter/toxicity , Autophagy , Inflammation/chemically induced , Autophagy-Related Proteins
13.
Vet Microbiol ; 285: 109871, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37672899

ABSTRACT

Porcine circovirus type 2 (PCV2) has been proven to co-infect with a variety of pathogens and cause immunosuppression. Previously, we have reported that PCV2 infection attenuates the production of pro-inflammatory cytokines induced by other pathogens in porcine macrophages. However, whether PCV2 can affect M1-type macrophage polarization induced by other pathogens is less well reported. Herein, we found that PCV2 infection suppressed M1 macrophage production induced by porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (H. parasuis) in the lung and promoted the proliferation of these pathogens in the piglets. Consistently, we confirmed that PCV2 inhibits M1 macrophage production and its associated gene expression in porcine alveolar macrophages (PAMs) both ex vivo and in vitro. Meanwhile, PCV2 inhibited lipopolysaccharide (LPS)-induced pro-inflammatory cytokines in vitro in a time- and dose-dependent manner. In PCV2-infected cells, LPS-induced signal transducer and activator of transcription (STAT1) phosphorylation and its nuclear translocation were decreased. Based on these findings, we further identified a role for PCV2 capsid protein (Cap) in LPS-induced M1 macrophage-associated genes and found that PCV2 Cap can significantly reduce STAT1 phosphorylation and its nuclear translocation, as well as the production of M1 macrophage-related genes. As the binding protein of PCV2 Cap, gC1qR protein was also associated with this inhibition process. gC1qR-binding activity-deficient PCV2 Cap mutated protein (Cap RmA) appeared an attenuated inhibitory effect on other pathogen-induced polarization of M1-type macrophages, suggesting that the inhibitory effect of PCV2 infection on M1-type macrophage polarization induced by other pathogens is dependent on Cap protein and the host gC1qR protein. Altogether, our results demonstrate that PCV2 infection inhibits macrophage M1 polarization induced by other pathogens via capsid and host gC1qR protein modulating JAK/STAT signaling.

14.
Endocrinology ; 164(10)2023 08 28.
Article in English | MEDLINE | ID: mdl-37702560

ABSTRACT

Thyroid hormone receptor beta (TRß) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRß has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRß on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRß agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRß amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRß not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Female , Humans , Animals , Mice , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Hormone Receptors beta , Aggression , Thyroid Neoplasms/drug therapy
15.
J Steroid Biochem Mol Biol ; 234: 106398, 2023 11.
Article in English | MEDLINE | ID: mdl-37703931

ABSTRACT

Good-quality reproductive cells are essential for reproduction. Endocrine disruptors are widely available in the environment and are known to have an adverse effect on spermatogenesis and steroidogenesis. One of them is tris(2,3-dibromopropyl) isocyanurate (TBC), i.e. one of the novel brominated flame retardants (NBFR). TBC is a widely distributed ingredient used in the production of flame retardants. Currently, it is known to affect the hormonal system, but the exact mechanism of its action is unknown. Therefore, the aim of the study was to determine whether TBC alone and in cotreatment with BHPI (estrogen receptor alpha antagonist) has an impact on the expression of nuclear receptors involved in the formation of steroid hormones, proteins, and enzymes responsible for steroidogenesis and the levels of steroid hormones (E2, P4, and T) in the GC-1 spg cell line as a mouse model of spermatogenic cells in vitro. Our results indicate that ERα is involved in the mechanism of TBC action, while no activation of PPARγ, AhR, and IGF-1R was observed. In addition, a decrease in the levels of most of the analyzed proteins and enzymes involved in steroid conversion was observed. Only Cyp19a1 was upregulated after TBC, BHPI, and TBC with BHPI cotreatment. In all the analyzed groups, a significant decrease in P4 and a subtle decrease in T and E2 were observed in the production and secretion of the hormones to the culture medium, compared to the control. The obtained results confirm the involvement of TBC in the dysregulation of steroid biosynthesis, which may affect male fertility.


Subject(s)
Estrogen Receptor alpha , Flame Retardants , Animals , Male , Mice , Hormones , Steroids
16.
J Biol Eng ; 17(1): 51, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550751

ABSTRACT

Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 µM to 79.3 µM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.

17.
Front Immunol ; 14: 1151194, 2023.
Article in English | MEDLINE | ID: mdl-37334363

ABSTRACT

Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.


Subject(s)
Hyaluronic Acid , Mesothelioma, Malignant , Humans , Hyaluronic Acid/metabolism , Complement C1q/metabolism , Membrane Glycoproteins/metabolism , Tumor Microenvironment , Carrier Proteins , Mitochondrial Proteins/genetics
18.
mSystems ; 8(3): e0073422, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37184409

ABSTRACT

Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.


Subject(s)
Acinetobacter baumannii , Cross Infection , Humans , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/metabolism , Polymerase Chain Reaction , Cross Infection/diagnosis , Biomarkers/metabolism
19.
Microbiol Spectr ; 11(3): e0046223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140387

ABSTRACT

An outbreak involving an extensively antibiotic-resistant Acinetobacter baumannii strain in three military treatment facilities was identified. Fifty-nine isolates recovered from 30 patients over a 4-year period were found among a large collection of isolates using core genome multilocus sequence typing (MLST). They differed by only 0 to 18 single nucleotide polymorphisms (SNPs) and carried the same resistance determinants except that the aphA6 gene was missing in 25 isolates. They represent a novel sublineage of GC1 lineage 1 that likely originated in Afghanistan. IMPORTANCE A. baumannii is recognized as one of the most important nosocomial pathogens, and carbapenem-resistant strains pose a particularly difficult treatment challenge. Outbreaks linked to this pathogen are reported worldwide, particularly during periods of societal upheaval, such as natural disasters and conflicts. Understanding how this organism enters and establishes itself within the hospital environment is key to interrupting transmission, but few genomic studies have examined these transmissions over a prolonged period. Though historical, this report provides an in-depth analysis of nosocomial transmission of this organism across continents and within and between different hospitals.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Military Personnel , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multilocus Sequence Typing , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Microbial Sensitivity Tests , Disease Outbreaks , Cross Infection/epidemiology , Cross Infection/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics
20.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108418

ABSTRACT

Listeria monocytogenes virulence factor InlB specifically interacts with the receptors c-Met and gC1q-R. Both receptors are present in non-professional and professional phagocytes, including macrophages. Phylogenetically defined InlB isoforms differently support invasion into non-professional phagocytes. This work deals with the effects of InlB isoforms on L. monocytogenes uptake and intracellular proliferation in human macrophages. Three isoforms of the receptor binding domain (idInlB) were derived from phylogenetically distinct L. monocytogenes strains belonging to the highly virulent CC1 (idInlBCC1), medium-virulence CC7 (idInlBCC7), and low-virulence CC9 (idInlBCC9) clonal complexes. The constant dissociation increased in the order idInlBCC1 << idInlBCC7 < idInlBCC9 for interactions with c-Met, and idInlBCC1 ≈ idInlBCC7 < idInlBCC9 for interactions with gC1q-R. The comparison of uptake and intracellular proliferation of isogenic recombinant strains which expressed full-length InlBs revealed that the strain expressing idInlBCC1 proliferated in macrophages twice as efficiently as other strains. Macrophage pretreatment with idInlBCC1 followed by recombinant L. monocytogenes infection disturbed macrophage functions decreasing pathogen uptake and improving its intracellular multiplication. Similar pretreatment with idInlBCC7 decreased bacterial uptake but also impaired intracellular multiplication. The obtained results demonstrated that InlB impaired macrophage functions in an idInlB isoform-dependent manner. These data suggest a novel InlB function in L. monocytogenes virulence.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Protein Isoforms/metabolism , Virulence Factors/metabolism , Proto-Oncogene Proteins c-met/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...