Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Arch Virol ; 169(5): 108, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658418

ABSTRACT

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.


Subject(s)
Biotechnology , Nucleopolyhedroviruses , Spodoptera , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Animals , Sf9 Cells , Biotechnology/methods , Spodoptera/virology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Occlusion Body Matrix Proteins , Occlusion Bodies, Viral/metabolism , Occlusion Bodies, Viral/genetics , Cell Line , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Tissue Eng Part C Methods ; 30(4): 183-192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411508

ABSTRACT

The utmost aim of regenerative medicine is to promote the regeneration of injured tissues using stem cells. Amniotic mesenchymal stem cells (AmMSCs) have been used in several studies mainly because of their easy isolation from amniotic tissue postpartum and immunomodulatory and angiogenic properties and the low level of rejection. These cells share characteristics of both embryonic/fetal and adult stem cells and are particularly advantageous because they do not trigger tumorigenic activity when injected into immunocompromised animals. The large-scale use of AmMSCs for cellular therapies would greatly benefit from fluorescence labeling studies to validate their tracking in future therapies. This study evaluated the fluorophore positivity, fluorescence intensity, and longevity of canine AmMSCs. For this purpose, canine AmMSCs from the GDTI/USP biobank were submitted to three labeling conditions, two commercial fluorophores [CellTrace CFSE Cell Proliferation kit - CTrace, and CellTracker Green CMFDA - CTracker (CellTracker Green CMFDA, CT, #C2925, Molecular Probes®; Life Technologies)] and green fluorescent protein (GFP) expression after lentiviral transduction, to select the most suitable tracer in terms of adequate persistence and easy handling and analysis that could be used in studies of domestic animals. Fluorescence was detected in all groups; however, the patterns were different. Specifically, CTrace and CTracker fluorescence was detected 6 h after labeling, while GFP was visualized no earlier than 48 h after transduction. Flow cytometry analysis revealed more than 70% of positive cells on day 7 in the CTrace and CTracker groups, while fluorescence decreased significantly to 10% or less on day 20. Variations between repetitions were observed in the GFP group under the present conditions. Our results showed earlier fluorescence detection and more uniform results across repetitions for the commercial fluorophores. In contrast, fluorescence persisted for more extended periods in the GFP group. These results indicate a promising direction for assessing the roles of canine AmMSCs in regenerative medicine without genomic integration.


Subject(s)
Fluoresceins , Mesenchymal Stem Cells , Stem Cells , Female , Animals , Dogs , Stem Cells/metabolism , Fluorescence , Green Fluorescent Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Fluorescent Dyes/metabolism , Cell Differentiation
3.
São Paulo; 2024. 36 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5350

ABSTRACT

Objective: This present work aimed to evaluate the activation of NF-kB in human monocyte THP-1 transfected with GFP cell line (THP-1-NFkB-GFP) aiming to evaluate the action of snake toxins on cell activation. Methods: To carry out this work, it was necessary to cultivate THP-1 and THP-1-NFkB-GFP cell lines in supplemented RPMI medium, Bothropstoxin-I and Bothropstoxin-II (BthTX-I and BthTX-II) isolation from Bothrops jararacussu venom by cation exchange chromatography analysis of the purity of the toxins carried out using the SDS-PAGE method, an analysis of the cytotoxic activity of BthTX-I and BthTX-II in THP-1-NFkB-GFP cell line using MTT method, and THP-1-NFkB-GFP cell activation, using LPS followed analysis by confocal microscope. Results: The toxins were successufully purifield to use in subsequent experiments. In citotoxicity assays it was verified that the toxins in the concentrations used did not induce the THP-1 death. Furthermore, the incubation of THP-1-NFkB-GFP with LPS was able to induce cell activation and GFP expression. Conclusion: In conclusion, THP-1 cells are activated via the NF-kB pathway by lipopolysaccharide (LPS).


Objetivo: Este presente trabalho tem como propósito avaliar a ativação do NF-kB em monócitos humanos da linhagem THP-1 transfectado com a proteína GFP (THP-1- NFkB-GFP) para posterior estudo da ação de toxinas de serpentes sobre a ativação celular. Métodos: Para realização deste trabalho foram realizados o cultivo das linhagens de monócitos humanos THP-1 e THP-1-GFP em meio RPMI suplementado, a purificação de Bothropstoxina-I e Bothropstoxina-II (BthTX-I e BthTX-II) do veneno de Bothrops jararacussu pelo método de cromatografia de troca catiônica, confirmação da pureza das toxinas pelo método de SDS-PAGE, a análise da atividade citotóxica de BthTX-I e BthTX-II nas células THP-1-GFP pelo método de MTT, e ensaios de ativação das células THP-1-NFkB-GFP analisados em microscópio confocal. Resultados: As toxinas foram obtidas em pureza a quantidade para a realização dos experimentos. Nos ensaios de citotoxicidade foi determinado que as toxinas nas concentrações utilizadas não induziram a morte das células THP-1. Além disso, a incubação das células com LPS foi capaz ativar as células THP-1-NFkB-GFP expressar a GFP. Conclusão: Em conclusão as células THP-1 são ativadas pela via NF-kB por lipopolissacarídeo (LPS).

4.
São Paulo; 2024. 34 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5349

ABSTRACT

The gut microbiota has a great diversity of genera and species. The most recent studies show an effective participation of the microbiome not only in the modulation and production of virulence factors of bacteria present in the intestine, but also in the signaling and communication between the body's organs. The study models used so far have limitations and do not allow an effective study of identification and quantification of distinct populations of related species. The cellular assays used for the study of biofilm formation and bacterial adhesion are very effective for visualization of samples, but in the case of mixed cultures of species with similar characteristics it is not possible to distinguish. In this study, bacterial transformation was performed by inserting the plasmid containing the green fluorescent protein (GFP) gene, giving the samples the ability to emit green light. After confirmation of the transformation, the samples were used in biofilm formation and bacterial adhesion assays in in vitro epithelial tissues containing more than one bacterial population. It was possible to visualize and identify the different samples with the use of staining and fluorescence microscopy.


A microbiota intestinal possui grande diversidade de gêneros e espécies. Os estudos mais recentes evidenciam uma participação efetiva do microbioma não só na modulação e produção de fatores de virulência de bactérias presentes no intestino como na sinalização e comunicação entre os órgãos do corpo. Os modelos de estudo utilizados até o momento possuem limitações e não permitem um estudo eficaz de identificação e quantificação de populações distintas de espécies relacionadas. Os ensaios celulares utilizados para o estudo de formação de biofilme e adesão bacteriana são bastante eficazes para visualização de amostras, porém no caso de culturas mistas de espécies com características semelhantes não é possível a distinção. Neste estudo foi realizada a transformação bacteriana para a inserção do plasmídeo contendo o gene green fluorescent protein (GFP) conferindo às amostras a capacidade de emitir luz verde. Após a confirmação da transformação, as amostras foram utilizadas em ensaios de formação de biofilme e adesão bacteriana em tecidos epiteliais in vitro contendo mais de uma população bacteriana. Foi possível a visualização e identificação das diferentes amostras com a utilização de coloração e microscopia de fluorescência.

5.
Mem. Inst. Oswaldo Cruz ; 119: e230223, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558564

ABSTRACT

BACKGROUND Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.

6.
Biosensors (Basel) ; 13(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36979599

ABSTRACT

L-Fucose is a monosaccharide abundant in mammalian glycoconjugates. In humans, fucose can be found in human milk oligosaccharides (HMOs), mucins, and glycoproteins in the intestinal epithelium. The bacterial consumption of fucose and fucosylated HMOs is critical in the gut microbiome assembly of infants, dominated by Bifidobacterium. Fucose metabolism is important for the production of short-chain fatty acids and is involved in cross-feeding microbial interactions. Methods for assessing fucose concentrations in complex media are lacking. Here we designed and developed a molecular quantification method of free fucose using fluorescent Escherichia coli. For this, low- and high-copy plasmids were evaluated with and without the transcription factor fucR and its respective fucose-inducible promoter controlling the reporter gene sfGFP. E. coli BL21 transformed with a high copy plasmid containing pFuc and fucR displayed a high resolution across increasing fucose concentrations and high fluorescence/OD values after 18 h. The molecular circuit was specific against other monosaccharides and showed a linear response in the 0-45 mM range. Adjusting data to the Hill equation suggested non-cooperative, simple regulation of FucR to its promoter. Finally, the biosensor was tested on different concentrations of free fucose and the supernatant of Bifidobacterium bifidum JCM 1254 supplemented with 2-fucosyl lactose, indicating the applicability of the method in detecting free fucose. In conclusion, a bacterial biosensor of fucose was validated with good sensitivity and precision. A biological method for quantifying fucose could be useful for nutraceutical and microbiological applications, as well as molecular diagnostics.


Subject(s)
Biosensing Techniques , Escherichia coli , Fucose , Humans , Bifidobacterium , Escherichia coli/genetics , Fucose/analysis , Milk, Human/chemistry , Oligosaccharides/chemistry , Biosensing Techniques/methods
7.
Heliyon ; 9(3): e14152, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36923901

ABSTRACT

The expression of many virulence genes in bacteria is regulated by quorum sensing (QS), and the inhibition of this mechanism has been intensely investigated. N-acetylcysteine (NAC) has good antibacterial activity and is able to interfere with biofilm-related respiratory infections, but little is known whether this compound has an effect on bacterial QS communication. This work aimed to evaluate the potential of NAC as a QS inhibitor (QSI) in Pseudomonas aeruginosa PAO1 through in silico and in vitro analyses, as well as in combination with the antibiotic tobramycin. Initially, a molecular docking analysis was performed between the QS regulatory proteins, LasR and RhlR, of P. aeruginosa with NAC, 3-oxo-C12-HSL, C4-HSL, and furanone C30. The NAC sub-inhibitory concentration was determined by growth curves. Then, we performed in vitro tests using the QS reporter strains P. aeruginosa lasB-gfp and rhlA-gfp, as well as the expression of QS-related phenotypes. Finally, the synergistic effect of NAC with the antibiotic tobramycin was calculated by fractional inhibitory concentrations index (FICi) and investigated against bacterial growth, pigment production, and biofilm formation. In the molecular docking study, NAC bound to LasR and RhlR proteins in a similar manner to the AHL cognate, suggesting that it may be able to bind to QS receptor proteins in vivo. In the biosensor assay, the GFP signal was turned down in the presence of NAC at 1000, 500, 250, and 125 µM for lasB-gfp and rhlA-gfp (p < 0.05), suggesting a QS inhibitory effect. Pyocyanin and rhamnolipids decreased (p < 0.05) up to 34 and 37%, respectively, in the presence of NAC at 125 µM. Swarming and swimming motilities were inhibited (p < 0.05) by NAC at 250 to 10000 µM. Additionally, 2500 and 10000 µM of NAC reduced biofilm formation. NAC-tobramycin combination showed synergistic effect with FICi of 0.8, and the best combination was 2500-1.07 µM, inhibiting biofilm formation up to 60%, besides reducing pyocyanin and pyoverdine production. Confocal microscopy images revealed a stronger, dense, and compact biofilm of P. aeruginosa PAO1 control, while the biofilm treated with NAC-tobramycin became thinner and more dispersed. Overall, NAC at low concentrations showed promising anti-QS properties against P. aeruginosa PAO1, adding to its already known effect as an antibacterial and antibiofilm agent.

8.
Microbiol Spectr ; : e0456422, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847570

ABSTRACT

Sporothrix brasiliensis has emerged as the most virulent species in the Sporothrix schenckii complex, accounting for sporotrichosis. Albeit the new insights into the understanding of host-pathogen interactions and comparative genomics of this fungi, the lack of genetic tools has hindered significant advances in this field of research. Here, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system to transform different strains of S. brasiliensis. We report parameters that account for a transformation efficiency of 3,179 ± 1,171 transformants/co-cultivation, which include the use of A. tumefaciens AGL-1 in a 2:1 ratio (bacteria:fungi) during 72 h at 26°C. Our data show that a single-copy transgene is transferred to S. brasiliensis that is mitotically stable in 99% of cells after 10 generations without selective pressure. In addition, we created a plasmid toolkit that allows the establishment of fusion proteins of any S. brasiliensis gene of interest with sGFP or mCherry under the control of the GAPDH or H2A endogenous promoters. These modules allow different levels of expression of the desired fusion. Moreover, we successfully targeted these fluorescent proteins to the nucleus and used fluorescence-tagged strains to assess phagocytosis. Overall, our data show that the ATMT system is an easy-to-use and efficient genetic toolbox for studies on recombinant expression and gene function in S. brasiliensis. IMPORTANCE Sporotrichosis is the most prevalent subcutaneous mycosis worldwide and has recently become a public health concern. Although immunocompetent hosts are also prone to sporotrichosis, immunodeficient hosts often develop a more severe and disseminated form of disease. To date, the Rio de Janeiro state in Brazil is the most significant feline zoonotic transmission epicenter in the world, with more than 4,000 human and feline diagnosed cases. Cats play an essential role in the S. brasiliensis infection due to their high susceptibility and transmissibility to other felines and humans. S. brasiliensis is the most virulent etiological agent of sporotrichosis, causing the most severe clinical manifestations. Despite the increasing incidence of sporotrichosis, the identification of virulence traits important for disease establishment, development, and severity has been lacking. In this work, we established an efficient genetic toolbox to manipulate S. brasiliensis that will guide future studies to define new virulence mechanisms and a better understanding of host-pathogen interactions from a molecular perspective.

9.
Heliyon, v. 9, n. 3, e14152, mar. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4828

ABSTRACT

The expression of many virulence genes in bacteria is regulated by quorum sensing (QS), and the inhibition of this mechanism has been intensely investigated. N-acetylcysteine (NAC) has good antibacterial activity and is able to interfere with biofilm-related respiratory infections, but little is known whether this compound has an effect on bacterial QS communication. This work aimed to evaluate the potential of NAC as a QS inhibitor (QSI) in Pseudomonas aeruginosa PAO1 through in silico and in vitro analyses, as well as in combination with the antibiotic tobramycin. Initially, a molecular docking analysis was performed between the QS regulatory proteins, LasR and RhlR, of P. aeruginosa with NAC, 3-oxo-C12-HSL, C4-HSL, and furanone C30. The NAC sub-inhibitory concentration was determined by growth curves. Then, we performed in vitro tests using the QS reporter strains P. aeruginosa lasB-gfp and rhlA-gfp, as well as the expression of QS-related phenotypes. Finally, the synergistic effect of NAC with the antibiotic tobramycin was calculated by fractional inhibitory concentrations index (FICi) and investigated against bacterial growth, pigment production, and biofilm formation. In the molecular docking study, NAC bound to LasR and RhlR proteins in a similar manner to the AHL cognate, suggesting that it may be able to bind to QS receptor proteins in vivo. In the biosensor assay, the GFP signal was turned down in the presence of NAC at 1000, 500, 250, and 125 μM for lasB-gfp and rhlA-gfp (p < 0.05), suggesting a QS inhibitory effect. Pyocyanin and rhamnolipids decreased (p < 0.05) up to 34 and 37%, respectively, in the presence of NAC at 125 μM. Swarming and swimming motilities were inhibited (p < 0.05) by NAC at 250 to 10000 μM. Additionally, 2500 and 10000 μM of NAC reduced biofilm formation. NAC-tobramycin combination showed synergistic effect with FICi of 0.8, and the best combination was 2500–1.07 μM, inhibiting biofilm formation up to 60%, besides reducing pyocyanin and pyoverdine production. Confocal microscopy images revealed a stronger, dense, and compact biofilm of P. aeruginosa PAO1 control, while the biofilm treated with NAC-tobramycin became thinner and more dispersed. Overall, NAC at low concentrations showed promising anti-QS properties against P. aeruginosa PAO1, adding to its already known effect as an antibacterial and antibiofilm agent.

10.
Saudi Dent J ; 34(7): 617-622, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36267533

ABSTRACT

Objective: The retention of glass fiber post (GFP) is considered a key factor for the long-term success of restorations of endodontically treated teeth. This study aimed to compare the compressive strength of a ceramic crown supported by a GFP using different luting agents. Methods: Forty single-rooted premolars were randomly divided into four groups (n = 10 each): control group (teeth without a GFP), Ketac Cem group (glass ionomer), RelyX ARC group (conventional dual-curing resin), and RelyX U200 group (self-adhesive dual-curing resin). After luting of the posts and placement of all-ceramic crowns made using feldspathic porcelain (Noritake EX-3), they were exposed to thermocycling for 1000 cycles and compressive strength tests. Statistical analysis included Kruskal-Wallis test with Dunn's multi-comparison test. Results: The Ketac Cem group and RelyX U200 group showed significantly greater fracture resistance to compressive loading than the control group. Conclusion: This study indicates a possible role of the luting agent used with the GFP in influencing the compressive strength of the restored teeth. In this study, the self-adhesive dual-curing resin and glass ionomer both offered resistance to fractures.

11.
ACS Sens ; 7(11): 3278-3286, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36306435

ABSTRACT

Lactate is an energy substrate and an intercellular signal, which can be monitored in intact cells with the genetically encoded FRET indicator Laconic. However, the structural complexity, need for sophisticated equipment, and relatively small fluorescent change limit the use of FRET indicators for subcellular targeting and development of high-throughput screening methodologies. Using the bacterial periplasmic binding protein TTHA0766 from Thermus thermophilus, we have now developed a single-fluorophore indicator for lactate, CanlonicSF. This indicator exhibits a maximal fluorescence change of 200% and a KD of ∼300 µM. The fluorescence is not affected by other monocarboxylates. The lactate indicator was not significantly affected by Ca2+ at the physiological concentrations prevailing in the cytosol, endoplasmic reticulum, and extracellular space, but was affected by Ca2+ in the low micromolar range. Targeting the indicator to the endoplasmic reticulum revealed for the first time sub-cellular lactate dynamics. Its improved lactate-induced fluorescence response permitted the development of a multiwell plate assay to screen for inhibitors of the monocarboxylate transporters MCTs, a pharmaceutical target for cancer and inflammation. The functionality of the indicator in living tissue was demonstrated in the brain of Drosophila melanogaster larvae. CanlonicSF is well suited to explore lactate dynamics with sub-cellular resolution in intact systems.


Subject(s)
Drosophila melanogaster , Lactic Acid , Animals , Fluorescent Dyes/chemistry , Fluorescence Resonance Energy Transfer/methods , Endoplasmic Reticulum/metabolism , Ionophores
12.
Microbiol Spectr ; 10(5): e0150422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36005449

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Mice , Humans , Animals , Cryptococcus neoformans/genetics , Histones , Hygromycin B , Host-Pathogen Interactions , Neomycin , Biology
13.
Mol Cell Probes ; 62: 101806, 2022 04.
Article in English | MEDLINE | ID: mdl-35257855

ABSTRACT

Immunosuppressed patients can suffer from Human alphaherpesvirus (HSV) infection with fast evolution, severe atypical symptomatology, and often-fatal outcome. Thus, the development and validation of new methods in vitro and in vivo to promote an early diagnosis and effective treatment of these patients are crucial. Therefore, this work aimed to develop a cell-based reporter assay for the detection of HSV through the transfection of Vero cells with the ICP10 promoter from HSV-2 linked to the pZsGreen1-1 plasmid. The assay was evaluated on Vero cells infected with HSV-1 or HSV-2 and followed by treating them with anti-HSV agents (acyclovir, gallic acid, convallatoxin, and Uncaria sp. extract) or with no anti-HSV activity agents (Passiflora edulis extract and cardenolide derivatives). The GFP expression was increased by both HSV cellular infection, which was detected by flow cytometry and fluorescence microscopy. F2R Zsgreen1-1 cells infection with 200 and 600 PFU/mL of HSV-2 increased the fluorescence intensity, when compared to the controls, by approximately 30% and 60%, respectively. Infection with 100 and 600 PFU/mL of HSV-1 also increased the fluorescence intensity by approximately 20% and 35%, when compared to the controls, respectively. The F2R ZsGreen1-1 system revealed to be an efficient assay, which can be used for clinical diagnosis, antiviral resistance evaluation, HSV cycle studies, and new antiviral drug research.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Acyclovir/pharmacology , Acyclovir/therapeutic use , Animals , Chlorocebus aethiops , Herpes Simplex/drug therapy , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/genetics , Humans , Vero Cells
14.
J Neurosci Methods ; 371: 109500, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35151666

ABSTRACT

BACKGROUND: The generation of animals expressing reporter proteins (e.g., GFP, mCherry or tdTomato) under the control of genes of interest has become a valuable tool in neuroscience. However, the histological reuse of brain sections of these genetically modified animals in unplanned experiments is often infeasible since the constitutive expression of fluorescent reporter proteins interferes with further fluorescent staining procedures. Thus, expensive or time-demanding experiments frequently need to be repeated using additional experimental animals. NEW METHOD: To improve the reuse of tissues of reporter animals for fluorescent staining procedures, we developed fast, inexpensive and simple methods that induce denaturation of constitutively expressed fluorescent proteins in free-floating brain slices. These procedures consist of incubation of brain sections either in a 1% sodium hydroxide alkaline solution (pH 13.0) for one hour at room temperature or at 95 °C for 10-30 min. RESULTS: The strong fluorescence of tdTomato, mCherry and eGFP was completely eliminated after incubation of brain sections of different reporter mice in a pH 13.0 solution for one hour. hrGFP was resistant to denaturation in an alkaline solution, but incubation of brain sections at 95 °C for 10 min eliminated the fluorescence of hrGFP, as well as of tdTomato, mCherry and eGFP. The denaturing procedures did not prevent the reuse of brain tissues in free-floating immunofluorescence staining using multiple antibodies. Furthermore, the quality of the labeling remained unaffected. Although pretreatment in pH 13.0 solution maintained good tissue integrity, as a side effect, brain sections exhibited increased autofluorescence. However, a rinse in 0.25% Sudan Black B solution was efficient in eliminating the autofluorescence without impairing the immunofluorescence staining or DAPI counterstaining. CONCLUSIONS: The present study provides simple procedures capable of inducing denaturation of fluorescent proteins in free-floating brain slices.


Subject(s)
Antibodies , Brain , Animals , Brain/metabolism , Coloring Agents/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Staining and Labeling
15.
Microbiology (Reading) ; 168(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748557

ABSTRACT

Rhizobium adhering proteins or 'Raps' are secreted proteins identified in a very restricted group of rhizobial strains, specifically those belonging to R. leguminosarum and R. etli. The distinctive feature of members of the Rap family is the presence of one or two cadherin-like domains or CHDLs that are also present in numerous extracellular bacterial and archaeal proteins and were proposed to confer carbohydrate binding ability. We have previously made an in-depth characterization of RapA2, a calcium-binding lectin, composed by two CHDLs, involved in biofilm matrix remodelling in R. leguminosarum bv. viciae 3841. In this study, CHDLs derived from RapA2 were analysed in detail, finding significant structural and functional differences despite their considerable sequence similarity. Only the carboxy-terminal CHDL retained properties similar to those displayed by RapA2. Our findings were used to obtain a novel fluorescent probe to study biofilm matrix development by confocal laser scanning microscopy, and also to shed some light on the role of the ubiquitous CHDL domains in bacterial secreted proteins.


Subject(s)
Rhizobium leguminosarum , Rhizobium , Rhizobium/metabolism , Cadherins/metabolism , Green Fluorescent Proteins , Extracellular Polymeric Substance Matrix/metabolism , Bacterial Proteins/metabolism
16.
Front Microbiol ; 12: 647977, 2021.
Article in English | MEDLINE | ID: mdl-34248866

ABSTRACT

The host microbiome plays an essential role in health and disease. Microbiome modification by pathogens or probiotics has been poorly explored especially in the case of probiotic yeasts. Next-generation sequencing currently provides the best tools for their characterization. Debaryomyces hansenii 97 (D. hansenii 97) and Yarrowia lipolytica 242 (Y. lipolytica 242) are yeasts that protect wildtype zebrafish (Danio rerio) larvae against a Vibrio anguillarum (V. anguillarum) infection, increasing their survival rate. We investigate the effect of these microorganisms on the microbiome and neutrophil response (inflammation) in zebrafish larvae line Tg(Bacmpx:GFP) i114. We postulated that preinoculation of larvae with yeasts would attenuate the intestinal neutrophil response and prevent modification of the larval microbiome induced by the pathogen. Microbiome study was performed by sequencing the V3-V4 region of the 16S rRNA gene and prediction of metabolic pathways by Piphillin in conventionally raised larvae. Survival and the neutrophil response were both evaluated in conventional and germ-free conditions. V. anguillarum infection resulted in higher neutrophil number in the intestinal area compared to non-infected larvae in both conditions. In germ-free conditions, infected larvae pre-inoculated with yeasts showed fewer neutrophil numbers than infected larvae. In both conditions, only D. hansenii 97 increased the survival of infected larvae. Beta diversity of the microbiota was modified by V. anguillarum and both yeasts, compared to non-inoculated larvae. At 3 days post-infection, V. anguillarum modified the relative abundance of 10 genera, and pre-inoculation with D. hansenii 97 and Y. lipolytica 242 prevented the modification of 5 and 6 of these genera, respectively. Both yeasts prevent the increase of Ensifer and Vogesella identified as negative predictors for larval survival (accounting for 40 and 27 of the variance, respectively). In addition, yeast pre-inoculation prevents changes in some metabolic pathways altered by V. anguillarum's infection. These results suggest that both yeasts and V. anguillarum can shape the larval microbiota configuration in the early developmental stage of D. rerio. Moreover, modulation of key taxa or metabolic pathways of the larval microbiome by yeasts can be associated with the survival of infected larvae. This study contributes to the understanding of yeast-pathogen-microbiome interactions, although further studies are needed to elucidate the mechanisms involved.

17.
Mol Biotechnol ; 63(10): 973-982, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34146324

ABSTRACT

Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.


Subject(s)
Antigens, Viral/genetics , Capsid Proteins/genetics , Nicotiana/growth & development , Rotavirus/metabolism , Single-Chain Antibodies/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antigens, Viral/chemistry , Antigens, Viral/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Models, Molecular , Molecular Weight , Protein Engineering , Protein Structure, Secondary , Recombinant Proteins/metabolism , Rotavirus/genetics , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Nicotiana/genetics , Nicotiana/metabolism
18.
Stem Cell Rev Rep ; 17(5): 1874-1888, 2021 10.
Article in English | MEDLINE | ID: mdl-34003465

ABSTRACT

Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.


Subject(s)
Lung , Animals , Mice , Nestin/genetics , Paracoccidioides/genetics
19.
Front Cell Dev Biol ; 9: 667296, 2021.
Article in English | MEDLINE | ID: mdl-33928092

ABSTRACT

The fish species Astyanax mexicanus with its sighted and blind eco-morphotypes has become an original model to challenge vertebrate developmental evolution. Recently, we demonstrated that phenotypic evolution can be impacted by early developmental events starting from the production of oocytes in the fish ovaries. A. mexicanus offers an amenable model to test the influence of maternal determinants on cell fate decisions during early development, yet the mechanisms by which the information contained in the eggs is translated into specific developmental programs remain obscure due to the lack of specific tools in this emergent model. Here we describe methods for the generation of pescoids from yolkless-blastoderm explants to test the influence of embryonic and extraembryonic tissues on cell fate decisions, as well as the production of chimeric embryos obtained by intermorph cell transplantations to probe cell autonomous or non-autonomous processes. We show that Astyanax pescoids have the potential to recapitulate the main ontogenetic events observed in intact embryos, including the internalization of mesodermal progenitors and eye development, as followed with zic:GFP reporter lines. In addition, intermorph cell grafts resulted in proper integration of exogenous cells into the embryonic tissues, with lineages becoming more restricted from mid-blastula to gastrula. The implementation of these approaches in A. mexicanus will bring new light on the cascades of events, from the maternal pre-patterning of the early embryo to the evolution of brain regionalization.

20.
Curr Res Insect Sci ; 1: 100014, 2021.
Article in English | MEDLINE | ID: mdl-36003598

ABSTRACT

Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.

SELECTION OF CITATIONS
SEARCH DETAIL