Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 452
Filter
1.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915682

ABSTRACT

Gangliosides are sialylated glycosphingolipids with essential but enigmatic functions in healthy and disease brains. GD3 is the predominant species in neural stem cells (NSCs) and GD3-synthase (sialyltransferase II; St8Sia1) knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits including cognitive impairment, depression-like phenotypes, and olfactory dysfunction. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal, followed by restored neuronal functions. Our group discovered that GD3 is involved in the maintenance of NSC fate determination by interacting with epidermal growth factor receptors (EGFRs), by modulating expression of cyclin-dependent kinase (CDK) inhibitors p27 and p21, and by regulating mitochondrial dynamics via associating a mitochondrial fission protein, the dynamin-related protein-1 (Drp1). Furthermore, we discovered that nuclear GM1 promotes neuronal differentiation by an epigenetic regulatory mechanism. GM1 binds with acetylated histones on the promoter of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase (GM2S); B4galnt1) as well as on the NeuroD1 in differentiated neurons. In addition, epigenetic activation of the GM2S gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. Interestingly, GM1 induced epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of Nurr1 and PITX3, dopaminergic neuron-associated transcription factors, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression, and it would modify Parkinson's disease. Multifunctional gangliosides significantly modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains. Maintaining proper ganglioside microdomains benefits healthy neuronal development and millions of senior citizens with neurodegenerative diseases. Here, we introduce how to isolate GD3 and GM1 and how to administer them into the mouse brain to investigate their functions on NSC fate determination and nerve cell specification.

2.
Mar Drugs ; 22(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921580

ABSTRACT

SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel ß-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo.


Subject(s)
Bivalvia , Lectins , Macrophages , Animals , Mice , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Lectins/pharmacology , Cell Proliferation/drug effects , Humans , Cytokines/metabolism , Phenotype , Signal Transduction/drug effects
3.
Neuroscience ; 551: 103-118, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810691

ABSTRACT

Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 µM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.

4.
Front Neurosci ; 18: 1392683, 2024.
Article in English | MEDLINE | ID: mdl-38737101

ABSTRACT

GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, ß-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.

5.
Cell Rep ; 43(5): 114117, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38630590

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum , G(M1) Ganglioside , Gangliosidosis, GM1 , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Mice , Calcium/metabolism , Cell Membrane/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , G(M1) Ganglioside/metabolism , Gangliosidosis, GM1/metabolism , Gangliosidosis, GM1/pathology , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Male , Female
6.
Genet Med ; 26(7): 101144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641994

ABSTRACT

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.


Subject(s)
Gangliosidosis, GM1 , Magnetic Resonance Imaging , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Female , Male , Prospective Studies , Child, Preschool , Child , Infant , Adolescent , Phenotype , Brain/diagnostic imaging , Brain/pathology , Mutation , Disease Progression , Adult , beta-Galactosidase
7.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612049

ABSTRACT

The coal gangue coarse-aggregate content in ordinary concrete should not be too large. In order to further improve the utilization rate of coal gangue coarse aggregate, this study used the principle of "strong wrapped weak" to prepare high-performance concrete. This study considered four factors, namely, water-binder (W/B) ratios, non-spontaneous combustion coal gangue (NCCG) coarse-aggregate contents, fly ash-slag mass ratios, and silica fume coating to prepare high-performance concrete. The workability, mechanical, and durability properties were studied, and the changes in the interfacial transition zone (ITZ) of concrete before and after sulfate attack and freeze-thaw cycles were analyzed based on the SEM test. The life prediction of NCCG coarse-aggregate high-performance concrete was carried out based on the grey system GM(1,1) prediction model. The results show that the NCCG coarse-aggregate contents have the greatest effect on compressive strength, sulfate resistance, and frost resistance. The W/B ratio has the greatest effect on the anti-carbonization properties. Fly ash-slag mixing can obtain better durability. Considering the effect on the design service life of high-performance concrete, NCCG coarse aggregate is used to prepare high-performance concrete in North China, and the recommended content is 60%; in the Northwest and Northeast regions, the recommended content is 45%. This study provides a basis for the preparation of high-performance concrete with NCCG coarse aggregate.

8.
Article in English | MEDLINE | ID: mdl-38683262

ABSTRACT

Coagulation factor replacement therapy for the X-linked bleeding disorder Haemophilia, characterized by a deficiency of coagulation protein factor VIII (FVIII), is severely complicated by antibody (inhibitors) formation. The development of FVIII inhibitors drastically alters the quality of life of the patients and is associated with a tremendous increase in morbidity as well as treatment costs. The ultimate goal of inhibitor control is antibody elimination. Immune tolerance induction (ITI) is the only clinically established approach for developing antigen-specific tolerance to FVIII. This work aims to establish a novel cost-effective strategy to produce FVIII molecules in fusion with cholera toxin B (CTB) subunit at the N terminus using the Bacillus subtilis expression system for oral tolerance, as the current clinical immune tolerance protocols are expensive. Regions of B-Domain Deleted (BDD)-FVIII that have potential epitopes were identified by employing Bepipred linear epitope prediction; 2 or more epitopes in each domain were combined and cDNA encoding these regions were fused with CTB and cloned in the Bacillus subtilis expression vector pHT43 and expression analysis was carried out. The expressed CTB-fused FVIII epitope domains showed strong binding affinity towards the CTB-receptor GM1 ganglioside. To conclude, Bacillus subtilis expressing FVIII molecules might be a promising candidate for exploring for the induction of oral immune tolerance.

9.
Iran J Child Neurol ; 18(2): 127-140, 2024.
Article in English | MEDLINE | ID: mdl-38617391

ABSTRACT

Abstract: Gangliosidosis is one of the hereditary metabolic diseases caused by the accumulation of Gangliosid in the central nervous system, leading to severe and progressive neurological deficits. Regarding phenotype, GM1 and GM2-Gangliosidosis are divided into Infantile, Juvenile, and Adult. Materials & Methods: In this study, thirty-seven patients with GM1 and GM2-Gangliosidosis were referred to the neurology department of Mofid Children's Hospital in Tehran, Iran, whose disease was confirmed from September 2019 to December 2021. This study assessed age, sex, and developmental status before the onset of the disease, clinical manifestations, brain imaging, and electroencephalography. Results: 97.20% of patients were the result of family marriage. Approximately 80% of juvenile patients were developmentally normal before the onset of the disease. Developmental delay was more common among infantile GM1-Gangliosidosis than infantile GM2-Gangliosidosis, but in total, more than 50% of GM1&GM2-Gangliosidosis patients had reached their developmental milestone before the onset of the disease. With the onset of disease symptoms, 100% of patients regressed in terms of movement, 97.20% of them mentally, and 75% of them had seizures during the disease. The most common clinical findings were cherry-red spot, Mongolian spot, macrocephaly, organomegaly, hyperacusis, and scoliosis. The most common brain imaging findings included bilateral thalamus involvement, brain atrophy, PVL, and delayed myelination. The most common finding in electroencephalography was background low voltage with abnormal sharp waves. Conclusion: This study concluded that most of the patients are the result of family marriage, and most of the juvenile patients are developmentally normal before the onset of the disease. In addition, more than 50% of infantile patients reach their developmental milestones before the onset of the disease. The most common clinical findings of these patients are seizures, cherry-red spot, macrocephaly, hyperacusis, Mongolian spot, and bilateral involvement of the thalamus.

10.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668720

ABSTRACT

Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hippocampus , Long-Term Potentiation , Membrane Microdomains , Receptors, AMPA , Amyloid beta-Peptides/metabolism , Receptors, AMPA/metabolism , Membrane Microdomains/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , G(M1) Ganglioside/metabolism , Humans , Neurons/metabolism , Rats , Mice , Protein Transport
11.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542297

ABSTRACT

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.


Subject(s)
Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , alpha-Synuclein/metabolism , Cytosol/metabolism , G(M1) Ganglioside/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Parkinson Disease/metabolism
12.
Toxins (Basel) ; 16(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38535799

ABSTRACT

Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.


Subject(s)
Cholera Toxin , Mutagens , Humans , G(M1) Ganglioside , Ligands , Mutagenesis
13.
Diagnostics (Basel) ; 14(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38472963

ABSTRACT

Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to ß-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings.

14.
Front Genet ; 15: 1344051, 2024.
Article in English | MEDLINE | ID: mdl-38404665

ABSTRACT

Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of ß-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot¼ in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.

15.
Vaccine ; 42(7): 1549-1560, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38320931

ABSTRACT

Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.


Subject(s)
Cholera Toxin , Neoplasms , Mice , Animals , Humans , Cholera Toxin/metabolism , Cross-Priming , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/pharmacology , Recombinant Proteins/pharmacology , Adjuvants, Immunologic/pharmacology , Recombinant Fusion Proteins/genetics , Epitopes , Antigen Presentation
16.
Biomed Pharmacother ; 171: 116071, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183741

ABSTRACT

Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid ß-peptide (Aß) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aß oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAß polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aß, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aß, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Apolipoprotein E4 , Sphingolipids , tau Proteins/metabolism , Ceramides
17.
Molecules ; 29(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257371

ABSTRACT

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Subject(s)
G(M1) Ganglioside , Gaucher Disease , Humans , Fibroblasts , beta-Galactosidase/genetics , Coloring Agents , Flow Cytometry , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Glucosylceramides
18.
Glycobiology ; 34(1)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37935390

ABSTRACT

GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1ß and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-ß-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.


Subject(s)
Microglia , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Microglia/metabolism , G(M1) Ganglioside/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Phosphorylation , Oxidative Stress
19.
Int J Biochem Cell Biol ; 167: 106508, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142771

ABSTRACT

TNF receptor-associated factor 2 (TRAF2) is involved in different cellular processes including signal transduction and transcription regulation. We here provide evidence of a direct interaction between the TRAF domain of TRAF2 and the monosialotetrahexosylganglioside (GM1). Previously, we showed that the TRAF domain occurs mainly in a trimeric form in solution, but it can also exist as a stable monomer when in the nanomolar concentration range. Here, we report that the quaternary structure of the TRAF domain is also affected by pH changes, since a weakly acidic pH (5.5) favors the dissociation of the trimeric TRAF domain into stable monomers, as previously observed at neutral pH (7.6) with the diluted protein. The TRAF domain-GM1 binding was similar at pH 5.5 and 7.6, suggesting that GM1 interacts with both the trimeric and monomeric forms of the protein. However, only the monomeric protein appeared to cause membrane deformation and inward vesiculation in GM1-containing giant unilamellar vesicles (GUVs). The formation of complexes between GM1 and TRAF2, or its TRAF domain, was also observed in cultured human leukemic HAP1 cells expressing either the truncated TRAF domain or the endogenous full length TRAF2. The GM1-protein complexes were observed after treatment with tunicamycin and were more concentrated in cells undergoing apoptosis, a condition which is known to cause cytoplasm acidification. These findings open the avenue for future studies aimed at deciphering the physiopathological relevance of the TRAF domain-GM1 interaction.


Subject(s)
G(M1) Ganglioside , Signal Transduction , Humans , TNF Receptor-Associated Factor 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Gene Expression Regulation , NF-kappa B/metabolism
20.
ACS Chem Neurosci ; 14(24): 4335-4343, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38050745

ABSTRACT

Amyloid ß peptide (Aß) is the crucial protein component of extracellular plaques in Alzheimer's disease. The plaques also contain gangliosides lipids, which are abundant in membranes of neuronal cells and in cell-derived vesicles and exosomes. When present at concentrations above its critical micelle concentration (cmc), gangliosides can occur as mixed micelles. Here, we study the coassembly of the ganglioside GM1 and the Aß peptides Aß40 and 42 by means of microfluidic diffusional sizing, confocal microscopy, and cryogenic transmission electron microscopy. We also study the effects of lipid-peptide interactions on the amyloid aggregation process by fluorescence spectroscopy. Our results reveal coassembly of GM1 lipids with both Aß monomers and Aß fibrils. The results of the nonseeded kinetics experiments show that Aß40 aggregation is delayed with increasing GM1 concentration, while that of Aß42 is accelerated. In seeded aggregation reactions, the addition of GM1 leads to a retardation of the aggregation process of both peptides. Thus, while the effect on nucleation differs between the two peptides, GM1 may inhibit the elongation of both types of fibrils. These results shed light on glycolipid-peptide interactions that may play an important role in Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Gangliosides/metabolism , Micelles , G(M1) Ganglioside/chemistry , Amyloid/metabolism , Alzheimer Disease/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...