Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 5(5): 2519-2531, 2019 May 13.
Article in English | MEDLINE | ID: mdl-33405758

ABSTRACT

The current work describes the development of a nanoscaled biodegradable metal polymeric three-dimensional framework with controlled nanotherapeutic release for endothelial cell patterning and sustained angiogenesis for biomedical applications. Biocompatible polymers gelatin and PLGA were used as polymeric nanofibrous three-dimensional framework in a core-shell manner with the gelatin core containing a biodegradable and bioactive metal nanoframework of cobalt caged with PEGylated curcumin by coaxial electrospinning. FTIR results confirmed the presence of nanobioactives in the core region of a coaxial nanofiber. Scanning electron microscopic analysis of the coaxial nanofibrous system showed a three-dimensional architecture that favored endothelial cell adhesion, patterning, migration, and proliferation. The as-synthesized nanoscaled biodegradable metal polymeric three-dimensional core-shell nanofibers exhibited potent antibacterial efficacy. Further, it improved the endothelial cell patterning promoting angiogenesis. The high therapeutic potential of cobalt nanoframework in the nanofibers enhanced the production of vascular endothelial growth factor promoting angiogenesis that resulted in the earlier restoration of wounded tissue compared with untreated control in vivo animal models. The study opens up a new horizon in exploring biodegradable biosorbable metal nanoframework for biomaterial applications. Additionally, the present study opens up a new strategy in developing biodegradable biosorbable biomaterial with enhanced vascularization efficacy to the biomaterial, which is important for acceptance of these biomaterials into the host tissue.

SELECTION OF CITATIONS
SEARCH DETAIL