ABSTRACT
Stress management is an adaptive advantage for survival in adverse environments. Pathogens face this challenge during host colonization, requiring an appropriate stress response to establish infection. The fungal pathogen Cryptococcus neoformans undergoes thermal, oxidative, and osmotic stresses in the environment and animal host. Signaling systems controlled by Ras1, Hog1, and calcineurin respond to high temperatures and osmotic stress. Cationic stress caused by Na+, K+, and Li+ can be overcome with glycerol, the preferred osmolyte. Deleting the glycerol phosphate phosphatase gene (GPP2) prevents cells from accumulating glycerol due to a block in the last step of its biosynthetic pathway. Gpp2 accumulates in a phosphorylated form in a cna1Δ strain, and a physical interaction between Gpp2 and Cna1 was found; moreover, the gpp2Δ strain undergoes slow growth and has attenuated virulence in animal models of infection. We provide biochemical evidence that growth in 1 M NaCl increases glycerol content in the wild type, whereas gpp2Δ, cna1Δ, and cnb1Δ mutants fail to accumulate it. The deletion of cnb1Δ or cna1Δ renders yeast cells sensitive to cationic stress, and the Gfp-Gpp2 protein assumes an abnormal localization. We suggest a mechanism in which calcineurin controls Gpp2 at the post-translational level, affecting its localization and activity, leading to glycerol biosynthesis. Also, we showed the transcriptional profile of glycerol-deficient mutants and established the cationic stress response mediated by calcineurin; among the biological processes differentially expressed are carbon utilization, translation, transmembrane transport, glutathione metabolism, oxidative stress response, and transcription regulation. To our knowledge, this is the first time that this transcriptional profile has been described. These results have implications for pathogen stress adaptability.
ABSTRACT
Cryptococcus neoformans is an opportunist fungal pathogen that causes meningoencephalitis in immunocompromised patients. During infection, this basidiomycete yeast has to adapt to several adverse conditions, especially nutrient availability. The interruption on various amino acid biosynthetic pathways and on amino acid uptake causes reduced viability, inability to cope with various stresses, failure in virulence factors expression and avirulence in animal model of infection. The sulfur amino acid biosynthesis and uptake is an important feature for pathogen survival in vivo and in vitro. Our previous work demonstrates that C. neoformans Cys3 BZip transcription factor controls the gene expression in several steps of the sulfur assimilation and sulfur amino acid biosynthesis. Also, we have shown that Gpp2 phosphatase modulates Cys3 activity. In Saccharomyces cerevisiae Gpp2 is induced in response to hyper osmotic or oxidative stress and during diauxic shift. In this work, we will show that, in C. neoformans, Gpp2 is required to respond to stresses, mainly osmotic stress; also its transcription is induced during exposure to NaCl. Global transcriptional profile of gpp2Δ by RNAseq shows that CYS3 and other genes in the sulfur assimilation pathway are up regulated, which is consistent with our previous report, in which Gpp2 acts by avoiding Cys3 accumulation and nuclear localization. In addition, several transporters genes, especially amino acid permeases and oxidative stress genes are induced in the gpp2Δ strain; on the contrary, genes involved in glucose and tricarboxylic acid metabolism are down regulated. gpp2Δ strain fails to express virulence factors, as melanin, phospholipase, urease and has virulence attenuation in Galleria mellonella. Our data suggest that Gpp2 is an important factor for general pathogen adaptation to various stresses and also to the host, and perhaps it could be an interesting target for therapeutic use.