Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Neurocase ; 30(2): 63-67, 2024 04.
Article in English | MEDLINE | ID: mdl-38762762

ABSTRACT

Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.


Subject(s)
Galactosylceramidase , Leukodystrophy, Globoid Cell , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Adult , Galactosylceramidase/genetics , Female , Mutation , Mutation, Missense
2.
Mol Ther ; 32(7): 2207-2222, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734898

ABSTRACT

Lysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice. Here, we found that OL-specific Galc conditional knockout (CKO) in mice results in a phenotype that includes wasting, psychosine accumulation, and neuroinflammation. Microglia- or astrocyte-specific Galc deletion alone in mice did not show specific phenotypes. Interestingly, mice with CKO of Galc from both OLs and microglia have a more severe neuroinflammation with an increase in globoid cell accumulation than OL-specific CKO alone. Moreover, the enhanced phenotype occurred without additional accumulation of psychosine. Further studies revealed that Galc knockout (Galc-KO) microglia cocultured with Galc-KO OLs elicits globoid cell formation and the overexpression of osteopontin and monocyte chemoattractant protein-1, both proteins that are known to recruit immune cells and promote engulfment of debris and damaged cells. We conclude that OLs are the primary cells that initiate KD with an elevated psychosine level and microglia are required for the progression of neuroinflammation in a psychosine-independent manner.


Subject(s)
Disease Models, Animal , Galactosylceramidase , Leukodystrophy, Globoid Cell , Mice, Knockout , Microglia , Oligodendroglia , Animals , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Microglia/metabolism , Mice , Galactosylceramidase/metabolism , Galactosylceramidase/genetics , Oligodendroglia/metabolism , Psychosine/metabolism
3.
Comput Struct Biotechnol J ; 23: 1397-1407, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38596316

ABSTRACT

Krabbe disease is a sphingolipidosis characterized by the genetic deficiency of the acid hydrolase ß-galactosylceramidase (GALC). Most of the studies concerning the biological role of GALC performed on Krabbe patients and Galc-deficient twitcher mice (an authentic animal model of the disease) indicate that the pathogenesis of this disorder is the consequence of the accumulation of the neurotoxic GALC substrate ß-galactosylsphingosine (psychosine), ignoring the possibility that this enzyme may exert a wider biological impact. Indeed, limited information is available about the effect of GALC downregulation on the cell lipidome in adult and developing organisms. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model human genetic diseases, including sphingolipidoses, and two GALC co-orthologs have been identified in zebrafish (galca and galcb). Here, we investigated the effect of the competitive and irreversible GALC inhibitor ß-galactose-cyclophellitol (GCP) on the lipid profile of zebrafish embryos. Molecular modelling indicates that GCP can be sequestered in the catalytic site of the enzyme and covalently binds human GALC, and the zebrafish Galca and Galcb proteins in a similar manner. Accordingly, GCP inhibits the ß-galactosylceramide hydrolase activity of zebrafish in vitro and in vivo, leading to significant alterations of the lipidome of zebrafish embryos. These results indicate that the lack of GALC activity deeply affects the lipidome during the early stages of embryonic development, and thereby provide insights into the pathogenesis of Krabbe disease.

4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474307

ABSTRACT

Mitochondrial plasticity, marked by a dynamism between glycolysis and oxidative phosphorylation due to adaptation to genetic and microenvironmental alterations, represents a characteristic feature of melanoma progression. Sphingolipids play a significant role in various aspects of cancer cell biology, including metabolic reprogramming. Previous observations have shown that the lysosomal sphingolipid-metabolizing enzyme ß-galactosylceramidase (GALC) exerts pro-oncogenic functions in melanoma. Here, mining the cBioPortal for a Cancer Genomics data base identified the top 200 nuclear-encoded genes whose expression is negatively correlated with GALC expression in human melanoma. Their categorization indicated a significant enrichment in Gene Ontology terms and KEGG pathways related to mitochondrial proteins and function. In parallel, proteomic analysis by LC-MS/MS of two GALC overexpressing human melanoma cell lines identified 98 downregulated proteins when compared to control mock cells. Such downregulation was confirmed at a transcriptional level by a Gene Set Enrichment Analysis of the genome-wide expression profiling data obtained from the same cells. Among the GALC downregulated proteins, we identified a cluster of 42 proteins significantly associated with GO and KEGG categorizations related to mitochondrion and energetic metabolism. Overall, our data indicate that changes in GALC expression may exert a significant impact on mitochondrial plasticity in human melanoma cells.


Subject(s)
Galactosylceramidase , Melanoma , Humans , Galactosylceramidase/genetics , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry
5.
Clin Genet ; 106(2): 150-160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38515343

ABSTRACT

Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.


Subject(s)
Galactosylceramidase , Genetic Association Studies , Leukodystrophy, Globoid Cell , Phenotype , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/physiopathology , Galactosylceramidase/genetics , Male , Female , Republic of Korea/epidemiology , Child, Preschool , Adult , Infant , Child , Adolescent , Young Adult , Mutation/genetics , Genotype , Genetic Predisposition to Disease , Age of Onset
6.
Genes (Basel) ; 14(8)2023 07 25.
Article in English | MEDLINE | ID: mdl-37628569

ABSTRACT

Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken ß-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.


Subject(s)
Leukodystrophy, Globoid Cell , White Matter , Animals , Mice , Galactosylceramidase , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Psychosine , Longevity/genetics , Hydrolases , Prosencephalon , Body Weight
7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445731

ABSTRACT

ß-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing ß-galactosyl moieties from ß-galactosylceramide and ß-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.


Subject(s)
Melanoma, Experimental , Skin Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Galactosylceramidase/genetics , Sphingolipids , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Mutation , Cell Line, Tumor , Melanoma, Cutaneous Malignant
8.
Brain ; 146(5): 1859-1872, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36370000

ABSTRACT

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Glucosylceramidase/genetics , Genome-Wide Association Study , Mutation , Hydrolases/genetics
9.
Neurobiol Dis ; 174: 105862, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36113749

ABSTRACT

Krabbe Disease (KD) is an autosomal recessive disorder that results from loss-of-function mutations in the GALC gene, which encodes lysosomal enzyme galactosylceramidase (GALC). Functional deficiency of GALC is toxic to myelin-producing cells, which leads to progressive demyelination in both the central and peripheral nervous systems. It is hypothesized that accumulation of psychosine, which can only be degraded by GALC, is a primary initiator of pathologic cascades. Despite the central role of GALC in KD pathomechanism, investigations of GALC deficiency at a protein level are largely absent, due in part, to the lack of sensitive antibodies in the field. Leveraging two custom antibodies that can detect GALC at endogenous levels, we demonstrated that GALC protein is predominantly localized to oligodendrocytes in cerebral white matter of an infant brain, consistent with its functional role in myelination. Mature GALC could also be quantitatively detected as a 26 kDa band by western blotting and correlated to enzyme activity in brain tissues. The p.Ile562Thr polymorphic variant, which is over-represented in the KD population, was associated with reduced mature GALC protein and activity. In three infantile KD cases, homozygous null mutations in GALC lead to deficiency in total GALC protein and activity. Interestingly, although GALC activity was absent, normal levels of total GALC protein were detected by a sandwich ELISA using our custom antibodies in a later-onset KD brain, which suggests that the assay has the potential to differentiate infantile- and later-onset KD cases. Among the infantile KD cases, we quantified a 5-fold increase in psychosine levels, and observed increased levels of acid ceramidase, a key enzyme for psychosine production, and hyperglycosylated lysosomal-associated membrane protein 1, a marker for lysosomal activation, in periventricular white matter, a major pathological brain region, when compared with age-matched normal controls. While near complete demyelination was observed in these cases, we quantified that an early-infantile case (age of death at 10 months) had about 3-fold increases in both globoid cells, a pathological hallmark for KD, and CD8-positive T lymphocytes, a pathological marker for multiple sclerosis, in the white matter when compared with a slower progressing infantile case (age of death at 21 months), which suggests a positive correlation between clinical severity and neuropathology. Taken together, our findings have advanced the understanding of GALC protein biology in the context of normal and KD brain white matter. We also revealed new neuropathological changes that may provide insights to understand KD pathogenesis.


Subject(s)
Leukodystrophy, Globoid Cell , White Matter , Humans , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Psychosine/metabolism , White Matter/pathology , Mutation
10.
Front Neurosci ; 16: 998275, 2022.
Article in English | MEDLINE | ID: mdl-36161165

ABSTRACT

Globoid cell leukodystrophy (GLD), or Krabbe disease (KD) is a rare neurodegenerative disease, and adult-onset GLD is more even neglected by clinicians. This review provides detailed discussions of the serum enzymes, genes, clinical manifestations, neuroimaging features, and therapies of GLD, with particular emphasis on the characteristics of adult-onset GLD, in an attempt to provide clinicians with in-depth insights into this disease.

11.
Front Mol Neurosci ; 15: 896314, 2022.
Article in English | MEDLINE | ID: mdl-35620447

ABSTRACT

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

13.
Hum Gene Ther ; 33(9-10): 499-517, 2022 05.
Article in English | MEDLINE | ID: mdl-35333110

ABSTRACT

Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.


Subject(s)
Leukodystrophy, Globoid Cell , Animals , Child, Preschool , Dependovirus/genetics , Disease Models, Animal , Dogs , Genetic Therapy , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Macaca mulatta/genetics , Mice , Psychosine
14.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188675, 2022 01.
Article in English | MEDLINE | ID: mdl-34974112

ABSTRACT

ß-galactosylceramidase (GALC) is a lysosomal enzyme that removes ß-galactose from ß-galactosylceramide, leading to the formation of the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth by acting as an oncosuppressive or oncogenic enzyme depending on the different experimental approaches, in vitro versus in vivo observations, preclinical versus clinical findings, and tumor type investigated. This review will recapitulate and discuss the contrasting experimental evidence related to the impact of GALC on the biological behavior of cancer and stromal cells and its contribution to tumor progression.


Subject(s)
Leukodystrophy, Globoid Cell , Neoplasms , Carcinogenesis , Galactosylceramidase/metabolism , Humans , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Sphingolipids
15.
Transl Pediatr ; 10(10): 2552-2562, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34765479

ABSTRACT

BACKGROUND: Krabbe disease, also called globoid cell leukodystrophy, is an autosomal recessive disease caused by a deficiency of lysosomal galactocerebrosidase. Infantile Krabbe occurring before 12 months of age accounts for most cases. Typical clinical features include irritability, seizures, peripheral neuropathy, and progressive neurodegeneration. METHODS: We collected and summarized the clinical and genetic data of an 8-month-old boy who demonstrated Krabbe disease onset at around 6 months. Potential pathogenic variants were screened by whole exome sequencing, and effects of candidate variants on alternative transcript and truncated protein were further validated at the RNA and protein level. RESULTS: Galactocerebrosidase activity was nearly absent in his blood, and whole exome sequencing revealed compound heterozygous variants [NM_000153.4: (c.658C>T); (c.328+5G>T)] in galactosylceramidase (GALC). The variant c.328+5G>T was predicted to alter splicing, and the abnormal isoform transcript was validated by observation of abnormal RNA isoforms. The variant c.658C>T was predicted to cause truncation of the protein, which was validated by western blotting. CONCLUSIONS: Our findings revealed compound heterozygous variants with solid experimental results for Krabbe disease and provides strong evidence for further Krabbe disease screening and clinical consulting. As a rare inherited systemic disorder, genetic variants in Krabbe disease should be investigated, as experimental validation for clinical diagnosis is needed.

16.
Trends Cancer ; 7(11): 974-977, 2021 11.
Article in English | MEDLINE | ID: mdl-34456156

ABSTRACT

Lysosomal ß-galactosylceramidase (GALC) removes ß-galactose from ß-galactosylceramide, thus generating the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth and differentiation, questioning its contribution to the sphingolipid metabolism in cancer cells and its role in tumor progression.


Subject(s)
Leukodystrophy, Globoid Cell , Neoplasms , Cell Differentiation , Galactosylceramidase/metabolism , Galactosylceramides/metabolism , Humans , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Neoplasms/metabolism , Neoplasms/pathology
17.
Front Oncol ; 10: 380, 2020.
Article in English | MEDLINE | ID: mdl-32318333

ABSTRACT

Colorectal cancer (CRC)-associated senescent fibroblasts may play a crucial role in tumor progression, but the mechanism remains unclear. In order to solve this complicated problem, we randomly collected 16 patients with CRC, who had been treated with oxaliplatin and capecitabine (XELOX). Hematoxylin-eosin (HE) staining revealed that the tumor-stroma ratio (TSR) of CRC was affected by XELOX treatment. Immunohistochemistry (IHC) and senescence-associated ß-galactosidase (SAßG) staining were used to verify a stable model of senescent fibroblasts. IHC analysis showed that high expression levels of galactosylceramidase (GALC) and significant senescence-associated ß-galactosidase (SAßG) staining were associated with CRC patient survival. We observed that fibroblasts overexpressing GALC underwent cell cycle arrest. Changes in cell morphology and cell cycle characteristics were accompanied by the upregulation of the p16, p21, and p53 gene, and the downregulation of hTERT expression. In a co-culture system, fibroblasts overexpressing GALC significantly increased the proliferation of CRC cells. Transmission electron microscopy (TEM) analysis confirmed that GALC overexpression fibroblasts co-cultured with CRC caused changes in CRC cell morphology. The aging fibroblast co-culture group (70%) had a higher migration ability. In vivo experiments and transcriptomics analysis were performed to verify the effect of senescent fibroblasts on tumor formation and to identify the potential mechanisms for the above results. We found that a high expression of ATF3 was related to good survival rates. However, a high expression of KIAA0907 was bad for survival rates (p < 0.05). The knockdown of ATF3 can promote cell proliferation, migration, and clonogenic assays, while downregulation of KIAA0907 inhibits cell proliferation, migration, and clonogenic assays. The results demonstrate that senescent fibroblasts with a high level of GALC regulated several aspects of the tumor growth process, including migration and invasion.

18.
Proc Natl Acad Sci U S A ; 116(40): 20097-20103, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527255

ABSTRACT

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.


Subject(s)
Acid Ceramidase/genetics , Gene Deletion , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Psychosine/metabolism , Animals , Cell Line, Tumor , Cytokines/metabolism , DNA Methylation , Disease Models, Animal , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Leukodystrophy, Globoid Cell/drug therapy
19.
Acta Neurol Scand ; 140(5): 359-365, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31350907

ABSTRACT

OBJECTIVES: Globoid cell leukodystrophy or Krabbe disease is an autosomal recessive lysosomal storage disorder characterized by a deficiency in galactosylceramidase (GALC) which hydrolyses galactosylceramide and galactosylsphingosine (psychosine). The accumulation of psychosine results in the apoptosis of myelin-forming cells. The goals of this research were to identify the heterozygous carriers of Krabbe disease in Sicily (Italy), to prevent the birth of foetuses affected by this disease, and eventually in the presence of positive embryos to direct them towards a treatment before symptoms occur when it is too late to receive a useful therapy. METHODS: Since more than 100 mutations have been reported as a cause of Krabbe disease, we started to screen relatives of the affected patients, whose mutation was known. We used a fast, sensitive and painless assay extracting genomic DNA from buccal swabs. The genotypes of single-nucleotide polymorphisms (SNPs) were analysed to identify the carriers of the selected mutations. RESULTS: In the last 2 years, we conducted the analysis of almost 100 subjects and individuated 40 heterozygotes carriers of Krabbe disease. One of the women examined was pregnant. CONCLUSIONS: The knowledge obtained from our investigations provided and will provide notable practical benefit to families in which the disease is manifested and to researchers who deal with this rare pathology. Finally, the results of our study will be useful to know the real incidence of Krabbe disease in a large territory where it is particularly present and to start a Krabbe's register, which at present does not exist.


Subject(s)
DNA Mutational Analysis/methods , Genetic Carrier Screening/methods , Leukodystrophy, Globoid Cell/diagnosis , Animals , Female , Genotype , Heterozygote , Humans , Italy , Mutation
20.
Hum Gene Ther ; 30(9): 1039-1051, 2019 09.
Article in English | MEDLINE | ID: mdl-31184217

ABSTRACT

Krabbe disease is an inherited neurodegenerative disease caused by mutations in the galactosylceramidase gene. In the infantile form, patients die before 3 years of age. Systemic adeno-associated virus serotype 9 (AAV9) gene therapy was recently shown to reverse the disease course in human patients in another lethal infantile neurodegenerative disease. To explore AAV9 therapy for Krabbe disease, we engineered a codon-optimized AAV9 galactosylceramidase vector. We further incorporated features to allow AAV9-derived galactosylceramidase to more efficiently cross the blood-brain barrier and be secreted from transduced cells. We tested the optimized vector by a single systemic injection in the twitcher mouse, an authentic Krabbe disease model. Untreated twitcher mice showed characteristic neuropathology and motion defects. They died prematurely with a median life span of 41 days. Intravenous injection in 2-day-old twitcher mice reduced central and peripheral neuropathology and significantly improved the gait pattern and body weight. Noticeably, the median life span was extended to 150 days. Intraperitoneal injection in 6- to 12-day-old twitcher mice also significantly improved the motor function, body weight, and median life span (to 104 days). Our results far exceed the ≤70 days median life span seen in all reported stand-alone systemic AAV therapies. Our study highlights the importance of vector engineering for Krabbe disease gene therapy. The engineered vector warrants further development.


Subject(s)
Dependovirus/genetics , Galactosylceramidase/genetics , Genetic Therapy , Genetic Vectors/genetics , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Transgenes , Animals , Disease Models, Animal , Enzyme Activation , Galactosylceramidase/metabolism , Gene Expression , Gene Order , Gene Transfer Techniques , Genetic Engineering , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/isolation & purification , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/physiopathology , Mice , Phenotype , Transduction, Genetic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...