Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Mol Genet Metab ; 142(4): 108517, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908075

ABSTRACT

GM2 gangliosidosis is a group of rare lysosomal storage disorders (LSDs) including Tay-Sachs disease (TSD) and Sandhoff disease (SD), caused by deficiency in activity of either ß-hexosaminidase A (HexA) or both ß-hexosaminidase A and ß-hexosaminidase B (HexB). Methods for screening and diagnosis of TSD and SD include measurement and comparison of the activity of these two enzymes. Here we report a novel method for duplex screening of dried blood spots (DBS) for TSD and SD by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method requires incubation of a single 3 mm DBS punch with the assay cocktail followed by the injection into the LC-MS/MS. The performance of the method was evaluated by comparing the confirmed TSD and SD patient DBS to random healthy newborn DBS which showed easy discrimination between the three cohorts. The method is multiplexable with other LSD MS/MS enzyme assays which is critical to the continued expansion of the NBS panels.

2.
Front Neurosci ; 18: 1392683, 2024.
Article in English | MEDLINE | ID: mdl-38737101

ABSTRACT

GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, ß-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.

3.
Cell Rep ; 43(5): 114117, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38630590

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum , G(M1) Ganglioside , Gangliosidosis, GM1 , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Mice , Calcium/metabolism , Cell Membrane/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , G(M1) Ganglioside/metabolism , Gangliosidosis, GM1/metabolism , Gangliosidosis, GM1/pathology , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Male , Female
4.
Genet Med ; 26(7): 101144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641994

ABSTRACT

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.


Subject(s)
Gangliosidosis, GM1 , Magnetic Resonance Imaging , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Female , Male , Prospective Studies , Child, Preschool , Child , Infant , Adolescent , Phenotype , Brain/diagnostic imaging , Brain/pathology , Mutation , Disease Progression , Adult , beta-Galactosidase
5.
Iran J Child Neurol ; 18(2): 127-140, 2024.
Article in English | MEDLINE | ID: mdl-38617391

ABSTRACT

Abstract: Gangliosidosis is one of the hereditary metabolic diseases caused by the accumulation of Gangliosid in the central nervous system, leading to severe and progressive neurological deficits. Regarding phenotype, GM1 and GM2-Gangliosidosis are divided into Infantile, Juvenile, and Adult. Materials & Methods: In this study, thirty-seven patients with GM1 and GM2-Gangliosidosis were referred to the neurology department of Mofid Children's Hospital in Tehran, Iran, whose disease was confirmed from September 2019 to December 2021. This study assessed age, sex, and developmental status before the onset of the disease, clinical manifestations, brain imaging, and electroencephalography. Results: 97.20% of patients were the result of family marriage. Approximately 80% of juvenile patients were developmentally normal before the onset of the disease. Developmental delay was more common among infantile GM1-Gangliosidosis than infantile GM2-Gangliosidosis, but in total, more than 50% of GM1&GM2-Gangliosidosis patients had reached their developmental milestone before the onset of the disease. With the onset of disease symptoms, 100% of patients regressed in terms of movement, 97.20% of them mentally, and 75% of them had seizures during the disease. The most common clinical findings were cherry-red spot, Mongolian spot, macrocephaly, organomegaly, hyperacusis, and scoliosis. The most common brain imaging findings included bilateral thalamus involvement, brain atrophy, PVL, and delayed myelination. The most common finding in electroencephalography was background low voltage with abnormal sharp waves. Conclusion: This study concluded that most of the patients are the result of family marriage, and most of the juvenile patients are developmentally normal before the onset of the disease. In addition, more than 50% of infantile patients reach their developmental milestones before the onset of the disease. The most common clinical findings of these patients are seizures, cherry-red spot, macrocephaly, hyperacusis, Mongolian spot, and bilateral involvement of the thalamus.

7.
NeuroImmune Pharm Ther ; 3(1): 17-32, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532783

ABSTRACT

Tay-Sachs disease (TSD) and its severe form Sandhoff disease (SD) are autosomal recessive lysosomal storage metabolic disorders, which often result into excessive GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Although patients with these diseases appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to early death accompanied by manifestation of motor difficulties and gradual loss of behavioral skills. Unfortunately, there is still no effective treatment available for TSD/SD. The present study highlights the importance of cinnamic acid (CA), a naturally occurring aromatic fatty acid present in a number of plants, in inhibiting the disease process in a transgenic mouse model of SD. Oral administration of CA significantly attenuated glial activation and inflammation and reduced the accumulation of GM2 gangliosides/glycoconjugates in the cerebral cortex of Sandhoff mice. Besides, oral CA also improved behavioral performance and increased the survival of Sandhoff mice. While assessing the mechanism, we found that oral administration of CA increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Sandhoff mice and that oral CA remained unable to reduce glycoconjugates, improve behavior and increase survival in Sandhoff mice lacking PPARα. Our results indicate a beneficial function of CA that utilizes a PPARα-dependent mechanism to halt the progression of SD and thereby increase the longevity of Sandhoff mice.

8.
Front Genet ; 15: 1344051, 2024.
Article in English | MEDLINE | ID: mdl-38404665

ABSTRACT

Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of ß-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot¼ in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.

9.
Cureus ; 16(1): e51797, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38322066

ABSTRACT

Tay-Sachs disease (TSD) is a rare, fatal neurodegenerative disorder characterized by the deficiency of the enzyme hexosaminidase-A (Hex A), which results in the accumulation of monosialoganglioside2 (GM2) ganglioside within nerve cells, predominantly affecting individuals of Ashkenazi Jewish descent. We report a remarkable case of a three-year-old South Asian male with infantile GM2 gangliosidosis, compounded by bronchopneumonia, a rarely documented complication in Tay-Sachs patients. The patient presented with recurrent seizures, fever, cough, and developmental delay. Confirmation of the diagnosis was obtained through reduced Hex A enzyme activity, corroborated by imaging and blood and urine analyses. Family history was significant for consanguinity and similar sibling fatalities. Despite the progressive nature of the disease, symptomatic management, including antiepileptic drugs, antibiotic therapy, and supportive care, led to an improvement in clinical condition, though ongoing monitoring remains essential. In this case, the coexistence of bronchopneumonia with Tay-Sachs disease is unusual, reflecting the necessity for this case report. The patient's response highlights the potential for symptomatic management, the importance of genetic counseling, and the imperative for research into gene and enzyme replacement therapies. The uniqueness of this case provides novel insights into the disease's spectrum, enhancing awareness, encouraging early diagnosis, and refining care strategies for Tay-Sachs disease, aligning with the broader goals of improving patient outcomes and advancing medical research.

10.
Mol Ther Methods Clin Dev ; 32(1): 101168, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38205442

ABSTRACT

The pathological accumulation of GM2 ganglioside associated with Tay-Sachs disease (TSD) and Sandhoff disease (SD) occurs in individuals who possess mutant forms of the heterodimer ß-hexosaminidase A (Hex A) because of mutation of the HEXA and HEXB genes, respectively. With a lack of approved therapies, patients experience rapid neurological decline resulting in early death. A novel bicistronic vector carrying both HEXA and HEXB previously demonstrated promising results in mouse models of SD following neonatal intravenous administration, including significant reduction in GM2 accumulation, increased levels of Hex A, and a 2-fold extension of survival. The aim of the present study was to identify an optimal dose of the bicistronic vector in 6-week-old SD mice by an intrathecal route of administration along with transient immunosuppression, to inform possible clinical translation. Three doses of the bicistronic vector were tested: 2.5e11, 1.25e11, and 0.625e11 vector genomes per mouse. The highest dose provided the greatest increase in biochemical and behavioral parameters, such that treated mice lived to a median age of 56 weeks (>3 times the lifespan of the SD controls). These results have direct implications in deciding a human equivalent dose for TSD/SD and have informed the approval of a clinical trial application (NCT04798235).

11.
J Inherit Metab Dis ; 47(2): 327-339, 2024 03.
Article in English | MEDLINE | ID: mdl-38112342

ABSTRACT

Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.


Subject(s)
Tay-Sachs Disease , White Matter , Humans , Tay-Sachs Disease/pathology , White Matter/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging , Brain/pathology , Atrophy/pathology
12.
Front Mol Neurosci ; 16: 1242814, 2023.
Article in English | MEDLINE | ID: mdl-38098938

ABSTRACT

AB-Variant GM2 gangliosidosis (ABGM2) is a rare and lethal genetic disorder caused by mutations in the GM2A gene that lead to fatal accumulation of GM2 gangliosides (GM2) in neurons of the central nervous system (CNS). GM2A encodes a transport protein known as GM2 activator (GM2A) protein, which is essential for degrading GM2 into their GM3 form. ABGM2 presents in infantile-, juvenile-, and adult-onset forms; of the three, the infantile-onset is the most prominent, and by far the most severe, as evidenced by high levels of GM2 accumulation, widespread neurodegeneration, and death by the age of 4. Gm2a-/- mice are commonly used as a model of ABGM2. These mice are characterized by phenotypes most representative of predicted adult-onset form of ABGM2, which include moderate GM2 accumulation and mild neurological defects. This mild phenotype has been attributed to compensation by alternative GM2 degradation pathways mediated by sialidase, neuraminidase 3 (NEU3), a pathway that is more prominent in mice than humans. To assess the extent to which NEU3 contributes to GM2 degradation, we generated double knock-out (Gm2a-/-Neu3-/-) mice. Compellingly, these mice present with a clinical phenotype resembling that of a more severe ABGM2, including ataxia, reduced mobility and coordination, weight loss, poor body scores, and lethality by 6-7 months. Furthermore, these phenotypes correlate with a dramatic increase in GM2 accumulation in the CNS compared to levels observed in either Gm2a-/- or Neu3-/- mice. Taken together, these studies, for the first-time, confirm that the mild neurological phenotype of Gm2a-/- mice is due to compensatory activity on GM2 catabolism through an alternate breakdown pathway involving NEU3. These studies support the use of double knockout mice as a novel and highly relevant model for pre-clinical drug studies in a more severe form of ABGM2.

13.
Cell Biochem Funct ; 41(8): 1093-1105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38018878

ABSTRACT

One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme ß-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.


Subject(s)
Gangliosidosis, GM1 , Adult , Animals , Infant, Newborn , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/therapy , Mutation , Mutation, Missense , Neurons , Genetic Therapy
14.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834060

ABSTRACT

GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.


Subject(s)
Gangliosidoses, GM2 , Tay-Sachs Disease , Humans , Animals , Mice , Dependovirus/genetics , Serogroup , Tay-Sachs Disease/therapy , Gangliosidoses, GM2/genetics , Gangliosidoses, GM2/therapy , G(M2) Activator Protein/genetics , Genetic Therapy
15.
Cells ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37759536

ABSTRACT

A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning.

16.
Free Neuropathol ; 42023 Jan.
Article in English | MEDLINE | ID: mdl-37577107

ABSTRACT

On February 23rd 1936, a boy-child ("Kn") died in an asylum near Munich after years of severe congenital disease, which had profoundly impaired his development leading to inability to walk, talk and see as well as to severe epilepsy. While a diagnosis of "Little's disease" was made during life, his postmortem brain investigation at Munich neuropathology ("Deutsche Forschungsanstalt für Psychiatrie") revealed the diagnosis of "amaurotic idiocy" (AI). AI, as exemplified by Tay-Sachs-Disease (TSD), back then was not yet understood as a specific inborn error of metabolism encompassing several disease entities. Many neuropathological studies were performed on AI, but the underlying processes could only be revealed by new scientific techniques such as biochemical analysis of nervous tissue, deciphering AI as nervous system lipid storage diseases, e.g. GM2-gangliosidosis. In 1963, Sandhoff & Jatzkewitz published an article on a "biochemically special form of AI" reporting striking differences when comparing their biochemical observations of hallmark features of TSD to tissue composition in a single case: the boy Kn. This was the first description of "GM1-Gangliosidosis", later understood as resulting from genetically determined deficiency in beta-galactosidase. Here we present illustrative materials from this historic patient, including selected diagnostic slides from the case "Kn" in virtual microscopy, original records and other illustrative material available. Finally, we present results from genetic analysis performed on archived tissue proving beta-galactosidase-gene mutation, verifying the 1963 interpretation as correct. This synopsis shall give a first-hand impression of this milestone finding in neuropathology. Original paper: On a biochemically special form of infantile amaurotic idiocy. Jatzkewitz H., Sandhoff K., Biochim. Biophys. Acta 1963; 70; 354-356. See supplement 1.

17.
Mol Genet Metab ; 140(1-2): 107632, 2023.
Article in English | MEDLINE | ID: mdl-37407323

ABSTRACT

Measurement of enzymatic activity in newborn dried blood spots (DBS) is the preferred first-tier method in newborn screening (NBS) for mucopolysaccharidoses (MPSs). Our previous publications on glycosaminoglycan (GAG) biomarker levels in DBS for mucopolysaccharidosis type 1 (MPS-I) and MPS-II demonstrated that second-tier GAG biomarker analysis can dramatically reduce the false positive rate in NBS. In the present study, we evaluate two methods for measuring GAG biomarkers in seven MPS types and GM1 gangliosidosis. We obtained newborn DBS from patients with MPS-IIIA-D, -IVA, -VI, -VII, and GM1 gangliosidosis. These samples were analyzed via two GAG mass spectrometry methods: (1) The internal disaccharide biomarker method; (2) The endogenous non-reducing end (NRE) biomarker method. This study supports the use of second-tier GAG analysis of newborn DBS by the endogenous NRE biomarker method, as part of NBS to reduce the false positive rate.


Subject(s)
Gangliosidosis, GM1 , Mucopolysaccharidoses , Infant, Newborn , Humans , Glycosaminoglycans , Neonatal Screening/methods , Disaccharides , Tandem Mass Spectrometry/methods , Mucopolysaccharidoses/diagnosis , Biomarkers
18.
EBioMedicine ; 92: 104627, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37267847

ABSTRACT

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Subject(s)
Gangliosidosis, GM1 , Neurodegenerative Diseases , Animals , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/therapy , Gangliosidosis, GM1/pathology , Neurodegenerative Diseases/therapy , Chromatography, Liquid , Tandem Mass Spectrometry , beta-Galactosidase/genetics , beta-Galactosidase/chemistry , beta-Galactosidase/therapeutic use , Biomarkers/cerebrospinal fluid , Genetic Therapy
19.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298170

ABSTRACT

GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.


Subject(s)
G(M2) Ganglioside , Gangliosidoses, GM2 , Humans , Animals , Mice , G(M2) Ganglioside/metabolism , Mutation , Central Nervous System/metabolism , Brain/metabolism , G(M2) Activator Protein/genetics , Gangliosidoses, GM2/genetics
20.
J Inherit Metab Dis ; 46(5): 972-981, 2023 09.
Article in English | MEDLINE | ID: mdl-37381921

ABSTRACT

GM1 gangliosidosis is a rare lysosomal storage disorder associated with ß-galactosidase enzyme deficiency. There are three types of GM1 gangliosidosis based on age of symptom onset, which correlate with disease severity. In 2019, we performed a retrospective multicentric study including all patients diagnosed with GM1 gangliosidosis in France since 1998. We had access to data for 61 of the 88 patients diagnosed between 1998 and 2019. There were 41 patients with type 1 (symptom onset ≤6 months), 11 with type 2a (symptom onset from 7 months to 2 years), 5 with type 2b (symptom onset from 2 to 3 years), and 4 with type 3 (symptom onset >3 years). The estimated incidence in France was 1/210000. In patients with type 1, the first symptoms were hypotonia (26/41, 63%), dyspnea (7/41, 17%), and nystagmus (6/41, 15%), whereas in patients with type 2a, these were psychomotor regression (9/11, 82%) and seizures (3/11, 27%). In types 2b and 3, the initial symptoms were mild, such as speech difficulties, school difficulties, and progressive psychomotor regression. Hypotonia was observed in all patients, except type 3. The mean overall survival was 23 months (95% confidence interval [CI]: 7, 39) for type 1 and 9.1 years (95% CI: 4.5, 13.5) for type 2a. To the best of our knowledge, this is one of the largest historical cohorts reported, which provides important information on the evolution of all types of GM1 gangliosidosis. These data could be used as a historical cohort in studies assessing potential therapies for this rare genetic disease.


Subject(s)
Gangliosidosis, GM1 , Lysosomal Storage Diseases , Humans , Gangliosidosis, GM1/epidemiology , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/diagnosis , beta-Galactosidase , Retrospective Studies , Muscle Hypotonia
SELECTION OF CITATIONS
SEARCH DETAIL
...