Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893392

ABSTRACT

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Reishi , Neurodegenerative Diseases/drug therapy , Humans , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
2.
Carbohydr Polym ; 341: 122298, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876710

ABSTRACT

Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients. This study determines the effect of WSG, which is a water-soluble glucan that is derived from G. lucidum, on melanoma cells. The results show that WSG inhibits cell viability and the mobility of melanoma cells. WSG induces changes in the expression of epithelial-to-mesenchymal transition (EMT)-related markers. WSG also downregulates EMT-related transcription factors, Snail and Twist. Signal transduction assays show that WSG reduces the protein levels in transforming growth factor ß receptors (TGFßRs) and consequently inhibits the phosphorylation of intracellular signaling molecules, such as FAK, ERK1/2 and Smad2. An In vivo study shows that WSG suppresses melanoma growth in B16F10-bearing mice. To enhance transdermal drug delivery and prevent oxidation, two highly biocompatible compounds, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), are used to synthesize a dissolvable microneedle patch that is loaded with WSG (MN-WSG). A functional assay shows that MN-WSG has an effect that is comparable to that of WSG alone. These results show that WSG has significant potential as a therapeutic agent for melanoma treatment. MN-WSG may allow groundbreaking therapeutic approaches and offers a novel method for delivering this potent compound effectively.


Subject(s)
Reishi , Snail Family Transcription Factors , Animals , Mice , Reishi/chemistry , Snail Family Transcription Factors/metabolism , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Epithelial-Mesenchymal Transition/drug effects , Cell Survival/drug effects , Mice, Inbred C57BL , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyvinyl Alcohol/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction/drug effects
3.
Toxics ; 12(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38922058

ABSTRACT

Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning.

4.
Biosci Rep ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904095

ABSTRACT

Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a "main active ingredient-target" network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The TNF protein was verified by western blot;Twenty one active ingredients in GL and 142 corresponding targets  were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI.GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer disease pathway and TNF protein.

5.
Redox Biol ; 74: 103227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865903

ABSTRACT

Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.


Subject(s)
Heat-Shock Response , Homeostasis , Hydrogen Sulfide , Membrane Potential, Mitochondrial , Mitochondria , Reishi , Triterpenes , Hydrogen Sulfide/metabolism , Reishi/metabolism , Reishi/genetics , Triterpenes/metabolism , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Quinone Reductases/metabolism , Quinone Reductases/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex III/metabolism , Electron Transport Complex III/genetics
6.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931214

ABSTRACT

The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.


Subject(s)
Acetaminophen , Apoptosis , Chemical and Drug Induced Liver Injury , NF-E2-Related Factor 2 , Oxidative Stress , Polysaccharides , Reishi , Acetaminophen/adverse effects , Oxidative Stress/drug effects , Apoptosis/drug effects , Reishi/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , NF-E2-Related Factor 2/metabolism , Animals , Male , Polysaccharides/pharmacology , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Fungal Polysaccharides/pharmacology , Antioxidants/pharmacology
7.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893471

ABSTRACT

Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.


Subject(s)
Proteomics , Reishi , Triterpenes , Reishi/metabolism , Reishi/growth & development , Reishi/chemistry , Triterpenes/metabolism , Triterpenes/chemistry , Proteomics/methods , Metabolomics/methods , Fungal Proteins/metabolism
8.
World J Microbiol Biotechnol ; 40(7): 225, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822208

ABSTRACT

Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.


Subject(s)
Fermentation , Mutation , Reishi , Triterpenes , Reishi/growth & development , Reishi/metabolism , Reishi/genetics , Triterpenes/metabolism , Biomass , Temperature , Plasma Gases/pharmacology
9.
Ecotoxicol Environ Saf ; 279: 116450, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768540

ABSTRACT

The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.


Subject(s)
Azo Compounds , Coloring Agents , Laccase , Reishi , Trityl Compounds , Coloring Agents/chemistry , Coloring Agents/toxicity , Coloring Agents/metabolism , Laccase/metabolism , Azo Compounds/toxicity , Azo Compounds/metabolism , Trityl Compounds/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Anthraquinones/chemistry , Anthraquinones/metabolism , Indigo Carmine/metabolism , Hydrogen-Ion Concentration , Water Decolorization , White
10.
Phytochemistry ; 224: 114148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763311

ABSTRACT

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Subject(s)
Fruiting Bodies, Fungal , Protective Agents , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Hep G2 Cells , Fruiting Bodies, Fungal/chemistry , Reishi/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Molecular Structure , Cell Survival/drug effects , Acetaminophen/pharmacology , Structure-Activity Relationship , Liver/drug effects , Dose-Response Relationship, Drug
11.
Talanta ; 276: 126262, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761660

ABSTRACT

Implementing the concept of turning waste into treasure, the conversion of biomass waste into high-value carbon materials, especially carbon dots (CDs), has pointed out a new direction for disease diagnosis, tumor treatment, and other aspects. In this work, we have reported the GL-CDs(Fe) via a simple synthesis route exploiting Ganoderma lucidum waste as the precursor. Thanks to their excellent optical property and peroxidase mimetic activity, a novel GL-CDs(Fe)-based ratio fluorescence/colorimetric/smartphone triple mode sensing platform is cleverly fabricated for glucose determination with the LOD of 0.28, 0.37, and 0.52 µΜ separately. Especially, this triple mode biosensor is successfully utilized for glucose detection in serum samples with the relative error of less than ±8 % compared with clinical reports. Surprisingly, the GL-CDs(Fe) also presents immense application prospects in high-level anti-counterfeiting aspects due to their excellent luminescent properties, high water-solubility, and easy availability. Furthermore, GL-CDs(Fe) can catalyze excessive H2O2 inside tumor cells to produce massive hydroxyl radicals (·OH) which break down the redox levels of cancer cells and thereby eliminate tumor cells. Thus, this integrated "Three-in-One" multifunctional platform based on GL-CDs(Fe) unveils enormous research and application prospects for bio-sensing, anti-counterfeiting, cancer treatment.


Subject(s)
Biosensing Techniques , Carbon , Iron , Quantum Dots , Reishi , Carbon/chemistry , Reishi/chemistry , Humans , Quantum Dots/chemistry , Iron/chemistry , Biosensing Techniques/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Glucose/analysis , Glucose/chemistry , Blood Glucose/analysis , Cell Line, Tumor , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Colorimetry/methods , Cell Proliferation/drug effects
12.
Int J Biol Macromol ; 270(Pt 2): 132106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734335

ABSTRACT

Glucose transporter 4 (GLUT4) directly facilitates cellular uptake of glucose and plays a crucial role in mammalian adipose tissue glucose metabolism. In this work, we constructed a cytosensor for sensitive electrochemiluminescence (ECL) detection of GLUT4 in rat adipocytes (RA cells). A carbon nanotube sponge (CNTSP) was selected to fabricate a permeable electrode to overcome the steric hindrance of cells on the electrode. The expression of GLUT4 after treatment with Ganoderma lucidum polysaccharide (GLP) was assessed by analyzing the luminescence emitted from cell-surface ECL probes. Our preliminary results suggest that GLP promote the expression of GLUT4, thereby enhancing the uptake of the fluorescent glucose 2-NBDG. Treatment with GLP affected GLUT4 expression in RA cells in a dose-dependent manner. Additionally, the ECL cytosensor contributes to the development of ECL imaging of receptors on the cell surface for clinical drug evaluation.


Subject(s)
Adipocytes , Glucose Transporter Type 4 , Reishi , Animals , Glucose Transporter Type 4/metabolism , Rats , Reishi/chemistry , Adipocytes/drug effects , Adipocytes/metabolism , Luminescent Measurements/methods , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Nanotubes, Carbon/chemistry , Electrochemical Techniques
13.
Fitoterapia ; 176: 106031, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768793

ABSTRACT

Five undescribed meroterpenoids, baosglucidnes A - E (1-5), were isolated from the fruiting bodies of Ganoderma lucidum. Among them, baosglucidne B (2) as a racemic mixture was obtained. Chiral HPLC was employed to separate a pair of enantiomers (+)-2 and (-)-2. The structures and stereochemical features of these substances were characterized by utilizing spectroscopic data and ECD calculations. Finally, the results of anti-renal fibrosis activity evaluation showed that baosglucidne E (5) could inhibit the expression of collagen I in TGF-ß1-induced rat kidney proximal tubular cells at 20 µM.


Subject(s)
Reishi , Terpenes , Animals , Reishi/chemistry , Rats , Terpenes/pharmacology , Terpenes/isolation & purification , Molecular Structure , Fruiting Bodies, Fungal/chemistry , Transforming Growth Factor beta1/metabolism , Fibrosis , China , Kidney Diseases/drug therapy , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Collagen Type I/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects
14.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792209

ABSTRACT

Ganoderma lucidum spore powder, valued for its nutritional and medicinal properties, contains polysaccharides crucial for its efficacy. However, the complex structural nature of these polysaccharides necessitates further investigation to fully realize their potential. This study aimed to investigate the effects of acid heat treatment on Ganoderma lucidum spore polysaccharides (GLSPs) to enhance their properties and application in antitumor activity. The GLSP was obtained via acid heat treatment, concentration, and centrifugal separation. This process led to a notable reduction in polysaccharide molecular weight, increasing water solubility and bioavailability. Analytical techniques including NMR spectroscopy and methylation analysis revealed a polysaccharide composition comprising four distinct monosaccharides, with molecular weights of 3291 Da (Mw) and 3216 Da (Mn). Six different linkage modes were identified, with a molar ratio of 1:5:2:3:4:3. In vivo experiments demonstrated the GLSP's significant inhibitory effect on the growth of four tumor models (sarcoma S180, Lewis lung cancer, liver cancer H22, and colon cancer C26) in mice, with no observed toxicity. These findings suggest the GLSP's potential as an antitumor therapeutic agent for clinical use.


Subject(s)
Antineoplastic Agents , Reishi , Spores, Fungal , Animals , Reishi/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Cell Line, Tumor , Molecular Weight
15.
J Agric Food Chem ; 72(21): 12072-12082, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38750669

ABSTRACT

Ganoderma lucidum polysaccharide (GLP) is a prebiotic with immunomodulatory effects. However, the therapeutic potential of GLP in tumor immunotherapy has not been fully explored, especially in T cell-mediated antitumor immunity. In this study, we found that GLP significantly inhibited tumor growth and activated antitumor immunity in colorectal cancer (CRC). In the spleens and tumor tissues, the proportion of cytotoxic CD8+T cells and Th1 helper cells increased, while immunosuppressive Tregs decreased. Additionally, microbiota dysbiosis was alleviated by GLP, and short-chain fatty acid production was increased. Meanwhile, GLP decreased the ratio of kynurenine and tryptophan (Kyn/Trp) in the serum, which contributed to antitumor immunity of T cells. More importantly, the combination of GLP and the immune checkpoint inhibitor anti-PD-1 monoclonal antibody further enhanced the efficacy of anti-PD-1 immunotherapy. Thus, GLP as a prebiotic has the potential to be used in tumor immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Polysaccharides , Programmed Cell Death 1 Receptor , Reishi , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Animals , Reishi/chemistry , Mice , Humans , Programmed Cell Death 1 Receptor/immunology , Polysaccharides/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Male , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immunity, Cellular/drug effects
16.
Heliyon ; 10(10): e30907, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770283

ABSTRACT

Aims: This study aims to delve into the anti-fatigue and sleep-aiding effects of various formulations containing Ganoderma lucidum extracts. Materials and methods: PGB [incorporating Ganoderma lucidum extract (GE), broken Ganoderma lucidum spore powder (GB) and Paecilomyces hepiali mycelium (PH)] and GBS [composed of GE, GB, and Ganoderma sinense powder (GS)] were chosen as representative recipes for this study. Mice were treated with these recipes or key components of Ganoderma lucidum for 14 consecutive days. Subsequently, a weight-bearing swimming experiment was conducted to assess the mice's exhaustion time and evaluate the anti-fatigue properties of the recipes. Sleep-aiding effects were analyzed by measuring the sleep latency and duration. Furthermore, levels of blood lactic acid, serum urea nitrogen, hepatic glycogen, muscle glycogen, and malondialdehyde (MDA) were measured in the livers and muscles. Key findings: The anti-fatigue abilities of the tested mice were significantly improved after treatment with PGB and their sleep quality improved as well with GBS treatment. PGB treatment for 14 days could significantly prolong the exhaustion time in weight-bearing swimming (from 10.1 ± 0.5 min to 15.2 ± 1.3 min). Meanwhile, glycogen levels in the livers and muscles were significantly increased, while the levels of serum lactic acid, serum urea nitrogen, and MDA in the livers and muscles were significantly decreased. In contrast, mice treated with GBS for 14 days experienced significant improvements in sleep quality, with shortened sleep latency (from 6.8 ± 0.7 min to 4.2 ± 0.4 min), extended sleep duration (from 88.3 ± 1.4 min to 152.5 ± 9.3 min), and decreased muscle MDA levels. These results indicated that Ganoderma lucidum extracts can be used for anti-fatigue and or aid in sleeping, depending on how they are prepared and administered. Significance: This study provides experimental evidence and theoretical basis for the development of Ganoderma lucidum recipes that are specifically designed to help with anti-fatigue and sleep.

17.
Mycobiology ; 52(2): 124-134, 2024.
Article in English | MEDLINE | ID: mdl-38690030

ABSTRACT

In recent decades, an enormous potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. The production of these new materials uses mycelium, a root-like structure of fungi consisting of a mass of branching, thread-like hyphae. Optimizing the production of mycelium-based materials and fungal growth under technical conditions needs to be further investigated. The main objective of this study was to select fast-growing fungi and identify optimized incubation conditions to obtain a dense mycelium mat in a short time. Further, the influence of the initial substrate characteristics on hyphae expansion was determined. Fungal isolates of Ganoderma lucidum, Pleurotus ostreatus, and Trametes versicolor were cultivated for seven days on substrate mixtures consisting of various proportions of pine bark and cotton fibers. Furthermore, the substrates were mixed with 0, 2, and 5 wt.% calcium carbonate (CaCO3), and the incubator was flushed with 0, 5, and 10 vol.% carbon dioxide (CO2). All samples grew in the dark at 26 °C and a relative humidity of 80%. Evaluation of growth rate shows that cotton fiber-rich substrates performed best for all investigated fungi. Although Pleurotus ostreatus and Trametes versicolor showed comparatively high growth rates of up to 5.4 and 5.3 mm d-1, respectively, mycelium density was thin and transparent. Ganoderma lucidum showed a significantly denser mycelium at a maximum growth rate of 3.3 mm d-1 on a cotton fiber-rich substrate (75 wt.%) without CaCO3 but flushed with 5 vol.% CO2 during incubation.

18.
Chemosphere ; 358: 142209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697564

ABSTRACT

Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.


Subject(s)
Reishi , Wastewater , Water Pollutants, Chemical , Zebrafish , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Reishi/metabolism , Waste Disposal, Fluid/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Malaysia , Sewage/chemistry , Sewage/microbiology , Biodegradation, Environmental , Diclofenac/toxicity
19.
Front Microbiol ; 15: 1362479, 2024.
Article in English | MEDLINE | ID: mdl-38572237

ABSTRACT

Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.

20.
BMC Complement Med Ther ; 24(1): 148, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580956

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked ß-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS: This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or ß-amyloid peptide (Aß25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS: Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aß25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION: These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aß25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.


Subject(s)
Neuroblastoma , Reishi , Humans , Hydrogen Peroxide/toxicity , Acetylcholinesterase , Neuroblastoma/pathology , Antioxidants/pharmacology , Amyloid beta-Peptides/toxicity , Ethanol , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...