Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.771
Filter
1.
Environ Pollut ; 358: 124534, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004207

ABSTRACT

This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.

2.
J Sci Food Agric ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017461

ABSTRACT

BACKGROUND: The gelation properties of surimi gel under various high temperatures (115, 118, and 121 °C) and sterilization intensities (F0 values of 3-7 min) were systematically investigated. A kinetic model detailed quality changes during heat treatment through mathematical analysis, elucidating mechanisms for gel quality degradation. RESULTS: Increased sterilization intensity significantly reduced the quality characteristics of surimi gel. Compared to the gel without sterilization treatment, when the sterilization intensity was increased to 7 min, the gel strength of the groups treated at 115 °C, 118 °C, and 121 °C decreased by 68.35%, 51.4%, and 51.71%, respectively, and the water-holding capacity decreased by 24.87%, 16.85%, and 22.5%, respectively. The hardness, chewiness, and whiteness of the gel also significantly decreased, and the changes in these indicators all conformed to a first-order kinetic model. Activation energy of 291.52 kJ mol-1 highlighted gel strength as the least heat-resistant. At equivalent sterilization intensities, 115 °C exhibited the poorest gel quality, followed by 121 °C, with 118 °C showing relatively better gel quality. Increased T22 and decreased PT22 suggested heightened water mobility and transition of immobilized water within the gel into free water. Protein degradation, weakened disulfide bonds and hydrophobic interaction, and protein conformation changes collectively led to a rough and incoherent gel network structure with large fissures, as verified by the results of scanning electron microscopy. Correlation analysis indicated potential for precise control over surimi gel quality by modulating physicochemical attributes. CONCLUSION: The outcomes may be beneficial to improve the production and quality control of ready-to-eat surimi-based products. © 2024 Society of Chemical Industry.

3.
Heart Vessels ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017677

ABSTRACT

The absolute value of small dense low-density lipoprotein (sd-LDL) including small LDL (s-LDL) and very small LDL (vs-LDL) has been shown to be associated with increased incidence of atherosclerosis. However, the impact of short-timeframe increases in sd-LDL on arteriosclerosis has not yet been elucidated. Therefore, we investigated the clinical roles of ex-vivo induced sd-LDL in acute coronary syndrome (ACS) using a novel method. This is a prospective, single-blind, and observational study that screened patients who underwent coronary angiography (CAG) for the treatment of ACS or investigation of heart-failure etiology between June 2020 and April 2022 (n = 247). After excluding patients with known diabetes mellitus and advanced renal disease, the patients were further divided into the ACS (n = 34) and control (non-obstructive coronary artery, n = 34) groups. The proportion of sd-LDL (s-LDL + vs-LDL) in total lipoproteins was observed before and after 2-h incubation at 37 ℃ (to approximate physiologic conditions) using 3% polyacrylamide gel electrophoresis. The coronary plaque burden was quantified upon CAG in the ACS group. There were no significant differences between the ACS and control groups in terms of clinical coronary risk factors. The baseline of large, medium, small, and very small LDL were comparable between the two groups. Following a 2-h incubation period, significant increases were observed in the ratios of s-LDL and vs-LDL in both the ACS and control groups (ACS, p = 0.01*; control, p = 0.01*). Notably, the magnitude of increase in sd-LDL was more pronounced in the ACS group compared to the control group, with s-LDL showing a significant difference (p = 0.03*) and vs-LDL showing a tread toward significance (p = 0.08). In addition, in both groups, there was a decrease in IDL and L-LDL, while M-LDL remained unchanged. The plaque burden index and rate of short-timeframe changes in both s-LDL (p = 0.01*) and vs-LDL (p = 0.04*) before and after incubation were significantly correlated in the ACS group. The enhanced production rate of sd-LDL induced under short-term physiologic culture in an ex-vivo model was greater in patients with ACS than in the control group. The increase in sd-LDL is positively correlated with coronary plaque burden. Short-timeframe changes in sd-LDL may serve as markers for the severity of coronary artery disease.

4.
Article in English | MEDLINE | ID: mdl-39014141

ABSTRACT

The electrochemical advanced oxidation process (EAOP) has shown significant promise in the field of refractory organic wastewater treatment due to its high efficiency and environmentally friendly nature. In this study, Ti/Sb-SnO2 electrodes with varying proportions of Hf were prepared using the sol-gel method. The addition of Hf transformed the original collapsing and broken surface into a flat and regular surface. The results demonstrated that Ti/Sb-SnO2-Hf electrode doped with 6% Hf exhibited a higher oxygen evolution potential (OEP) and excellent stability. The OEP increased from 2.315 V without Hf-doping to 2.482 V, and the corresponding actual life was 321.05% higher than that without Hf. The current density (5-40 mA·cm-2), electrolyte concentration (0.02-0.2 mol·L-1), pH (3-11), and initial pollutant concentration (5-80 mg·L-1) were evaluated to confirm the tetracycline (TC) degradation characterization of Ti/Sb-SnO2-6%Hf electrodes. It was concluded that under the optimal degradation conditions, the removal rate of TC could reach 99.66% within 2 h. The degradation of TC follows first-order reaction kinetics. The oxidative degradation of TC was achieved through indirect oxidation, with ·OH playing a dominant role. TC's electrochemical oxidation degradation pathway has been proposed: Based on LC-MS results, three main pathways are speculated. During the electrocatalytic oxidation process, decarboxylation, deamidation, and ring-opening reactions occur under ·OH attack, producing intermediate compounds with m/z values of 427, 433, 350, 246, 461, 424, 330, 352, 309, 263, and 233. These intermediates are further oxidized to intermediate compounds with an m/z value of 218. This work introduces a new efficient anode electrochemical catalyst for the degradation of TC, providing a strategy for industrial applications.

5.
Int J Biol Macromol ; : 133949, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025172

ABSTRACT

Different methods of starch modification have been proposed to broaden its application. In this study, the effects of ternary mixtures of natural crosslinking agents: chitosan-betaine-vanillin and gelatin-betaine-vanillin on the properties of pea starch were explored. These combinations of substances were selected because they have complementary crosslinking mechanisms. The effects of the ternary crosslinker mixtures on the gelatinization, mechanical properties, thermal stability, and microstructure of pea starch were compared. Both combinations of crosslinkers enhanced the gelatinization viscosity, viscoelasticity, gel hardness, and thermal stability of the pea starch, by an amount that depended on the ratio of the different components in the ternary mixtures. In all cases, the crystal structure of the starch granules disappeared after gelatinization. The modified starch had a more compact and uniform microstructure than the non-modified version, especially when it was crosslinked by vanillin, gelatin, and betaine. The improvement in the gelation properties of the starch were primarily attributed to hydrogen bonding, electrostatic attraction, and Schiff base crosslinking of the various components present. Gelatin enhanced the gel strength more than chitosan, which was probably because of greater hydrogen bonding. Our findings suggest that the properties of starch can be enhanced by adding ternary mixtures of natural crosslinkers.

6.
Int J Biol Macromol ; : 133863, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025182

ABSTRACT

Fats, oils and grease (FOGs) deposits in sewers have recently become a significant problem, causing financial strain on water companies, damaging sewer lines, and exposing the environment to dirty water through sanitary sewer overflows. Despite the proactive use of grease traps for physical oil-water separation, the issue of FOG deposits persists. This study proposes the use of adsorption-based oil-water separation, employing superhydrophobic cotton, as a new alternative method for removing FOGs. Durable superhydrophobic cotton was successfully prepared using a simple two-step sol-gel method, with octadecyltrimethoxysilane (ODTMS) as a modifying silane. The resulting cotton samples demonstrated remarkable superhydrophobicity, evidenced by water contact angle (WCA) above 154°. Additionally, it exhibited exceptional durability and stability when exposed to hot water, harsh acidic and alkaline solutions, as well as during a laundry test. Moreover, the cotton displayed excellent oil-water separation efficiency (> 98 %) and maintained consistent performance throughout 20 reuse cycles, highlighting its high reusability. This approach holds the potential to address the prevailing FOG deposit issues and contribute to more efficient and sustainable wastewater management practices.

7.
Food Chem ; 458: 140307, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38970963

ABSTRACT

Heavy metals are one of the most important pollutants in the environment due to their toxic properties, accumulation, and indestructibility. So that when the metals enter the body of plants from natural and artificial sources, they accumulate in the organs and tissues. Therefore, in the present study, a sensitive and selective strategy is reported for the detection of cadmium(II) ions. To achieve this purpose, first sodium aluminate nanostructures were synthesized using a sol-gel method and green route. Then, using the nanostructures, a modified nanostructured sensor was designed. The characterization of the nanostructures was performed using various techniques. Next, the electrochemical behavior of the modified nanostructured electrode was investigated. The studies show the environment-friendly sensor has an enhanced voltammetric response than the unmodified sensor for cadmium(II) ions. After confirming the performance of the modified sensor, the analysis of cadmium(II) ions at the surface of the nanostructured modified electrode was investigated. Then, by differential pulse voltammetry (DPV) technique, the detection limit of cadmium(II) ions in optimal conditions was obtained at 1.10 nM with a broad dynamic linear range of 0.02-20.00 µM and 20.00-900.00 µM. Finally, the performance of the modified nanostructure sensor was investigated in food, biological and environmental samples, and acceptable results were obtained using the proposed method.

8.
J Environ Manage ; 366: 121686, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971057

ABSTRACT

In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.

9.
J Colloid Interface Sci ; 675: 646-659, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38991279

ABSTRACT

HYPOTHESIS: Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability. EXPERIMENTS: ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized. To observe the shell-core structure and oil-water interface details of SO/FO/CLO PKEGs by confocal laser scanning microscope and cryo-scanning electron microscope. Accelerated oxidation of FO was performed to assess the protective effect of PKEG on lipids. FINDINGS: The SO, FO, and CLO PKEGs stabilized by 2 % ZT NPs, with oil fraction (φ = 0.5-0.6), were obtained. PKEGs show high viscoelasticity, clear shell-core structure spatial network structure, and ideal storage stability. Under accelerated oxidation, the degree of oxidative rancidity of FO PKEG was obviously lower than that of free FO. Overall, this work opens up new possibilities for using natural PKEG to prevent oxidative deterioration and prolong the shelf-life of PUFA-rich oils.

10.
Curr Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991614

ABSTRACT

The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.

11.
Cureus ; 16(6): e61958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978898

ABSTRACT

Objectives To assess changes in gingival thickness (GTH) and the width of keratinized gingival tissue (KTW) following treatment with either connective tissue graft (CTG) or an albumin gel-platelet-rich fibrin mixture (Alb-PRF). Materials and methods Twenty treatment sites were included in a split-mouth design involving 10 patients with a thin gingival phenotype in the mandibular anterior region. The sample was randomly divided into two groups, with the Alb-PRF applied to the experimental group and CTG used for the control group. GTH and KTW were measured at baseline and after one, three, and six months. Results GTH increased in both groups during all follow-up periods. However, no statistically significant differences (p > 0.05) between the groups were observed at baseline and six months. At three months, the experimental group exhibited significantly higher GTH (p < 0.001). Additionally, at three and six months, the CTG group showed a superior increase in KTW (p < 0.05). Conclusion Within the constraints of this study, Alb-PRF application for modifying thin gingival phenotypes proved to be an effective therapeutic option, potentially serving as an alternative to CTGs. Although Alb-PRF resulted in thicker gingiva, CTG demonstrated a greater enhancement in KTW.

12.
Anal Bioanal Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981911

ABSTRACT

Rapid, efficient, versatile, easy-to-use, and non-expensive analytical approaches are globally demanded for food analysis. Many ambient ionization approaches based on electrospray ionization (ESI) have been developed recently for the rapid molecular characterization of food products. However, those approaches mainly suffer from insufficient signal duration for comprehensive chemical characterization by tandem MS analysis. Here, a commercially available disposable gel loading tip is used as a low-cost emitter for the direct ionization of untreated food samples. The most important advantages of our approach include high stability, and durability of the signal (> 10 min), low cost (ca. 0.1 USD per run), low sample and solvent consumption, prevention of tip clogging and discharge, operational simplicity, and potential for automation. Quantitative analysis of sulfapyridine, HMF (hydroxymethylfurfural), and chloramphenicol in real sample shows the limit-of-detection 0.1 µg mL-1, 0.005 µg mL-1, 0.01 µg mL-1; the linearity range 0.1-5 µg mL-1, 0.005-0.25 µg mL-1, 0.01-1 µg mL-1; and the linear fits R2 ≥ 0.980, 0.991, 0.986. Moreover, we show that tip-ESI can also afford sequential molecular ionization of untreated viscous samples, which is difficult to achieve by conventional ESI. We conclude that tip-ESI-MS is a versatile analytical approach for the rapid chemical analysis of untreated food samples.

13.
Heliyon ; 10(12): e33149, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994095

ABSTRACT

The purpose of this experiment was to explore the influence of different cooking temperatures on the deterioration characteristics of pork batter gel by using proteomics, gel electrophoresis, size and chemical bond of aggregates. The results showed that the protein molecules of the pork batter gel was degraded during heating cooking and the protein aggregates were composed of many degraded protein fragments; compared with the control group 75 °C (0 min), the significant degradation of cytoskeleton showed at 110 °C (30 min) and 121 °C (30 min) and the significant degradation of myosin complexonly appeared at 121 °C (30 min). As the heating temperature points increased, compared with the control group 75 °C (0 min), the different temperatures could promote the separation of metal ions with proteins especially at 110 °C (30 min) and 121 °C (30 min), which could ultimately influence quality of pork batter gel by the size of particle. As the increase of heating temperature points, the recombination of aggregates composed of different proteins was not conducive to the retention of capillary water, which reduced the texture of pork batter gel. This research provided theoretical support for improving the process property of the meat products.

14.
J Colloid Interface Sci ; 675: 883-892, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002238

ABSTRACT

The construction of solid-state electrolytes for flexible zinc-air batteries is extremely challenging. A flexible and highly conductive solid electrolyte designed with a "seaweed structure" is reported in this work. Sodium alginate serves as the backbone to form a robust network structure, and the grafted quaternary ammonium groups provide channels for rapid ion transport, achieving excellent flexibility and hydroxide conductivity. The conductivity of the modified electrolyte membrane (QASA) is 5.23 × 10-2 S cm-1 at room temperature and reaches up to 8.51 × 10-2 S cm-1 at 75 °C. In the QASA based battery, bending at any angle is realized, and the power density is up to 57.28 mW cm-2. This work provides a new way to prepare high conductivity, green solid-state zinc-air batteries, and opens up a research line of thought for flexible energy storage materials.

15.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000288

ABSTRACT

Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Levodopa/therapeutic use , Deep Brain Stimulation/methods , Antiparkinson Agents/therapeutic use , Genetic Therapy/methods , Animals
16.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000538

ABSTRACT

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Subject(s)
Administration, Cutaneous , Diclofenac , Emulsions , Skin Absorption , Skin , Diclofenac/pharmacokinetics , Diclofenac/administration & dosage , Diclofenac/chemistry , Humans , Skin Absorption/drug effects , Emulsions/chemistry , Skin/metabolism , Skin/drug effects , Rheology , Gels/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Administration, Topical , Emollients/chemistry , Emollients/pharmacokinetics , Emollients/administration & dosage
17.
J Ayurveda Integr Med ; 15(4): 100925, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003915

ABSTRACT

BACKGROUND: Radiation-induced oral mucositis is one of the most critical dose-limiting toxicities associated with radiation therapy for oral cancer which can result in treatment interruption and compromise the quality of the life of cancer patients. Jati (Jasminum grandiflorum) is used in Ayurveda to treat oral conditions like stomatitis and mouth ulcers. OBJECTIVE: To test the feasibility of Jati oral gel as an add on therapy in grade 2 radiation-induced oral mucositis. MATERIALS AND METHODS: A prospective, open-label, non-randomised pilot trial was conducted on 20 patients with grade 2 radiation-induced oral mucositis at a tertiary cancer hospital. The control group received sodium bicarbonate mouthwash 4-5 times daily as the standard of care, while the intervention arm also received Jati oral gel twice daily. We used the ImageJ software for objective assessment and the Visual Analogue Scale for subjective pain assessment. The study was continued for 15 days or until the mucositis progressed to grade 3 or resolved to grade 1. RESULT: There was a significant reduction in the mean pain score and mean area of mucositis in the intervention group compared to the control group. CONCLUSION: Jati oral gel is a suitable medicament as an add-on therapy in managing grade 2 radiation-induced oral mucositis.

18.
Bioelectrochemistry ; 160: 108775, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39003949

ABSTRACT

The pattern of the activity of proteases is related to distinct physiological states of living organisms. Often activity changes of a certain protease can be assigned to a specific disease. Hence, they are useful biomarkers and a simple and fast determination method of their activity could be a valuable tool for the efficient monitoring of numerous diseases. Here, two different methods for the qualitative and quantitative determination of protease activity are demonstrated using the model system of proteinase K. The first test system is based on a protein-modified and colored 3D silica structure that changes color when exposed to the enzyme. This method has also been used for the detection of matrix metallo-protease 2 (MMP2) with gelatine as protease substrate on the plates. The second detection system uses the decrease in the voltammetric signal of a cytochrome c/DNA multilayer electrode after incubation with a protease to quantitatively determine its proteolytic activity. While activities down to 0.15 U/ml can be detected with the first method, the second one provides detection limits of about 0.03U/ml (for proteinase K.) The functionality of both systems can be demonstrated and ways for further enhancement of sensitivity have been elucidated.

19.
Meat Sci ; 217: 109595, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39004037

ABSTRACT

The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.

20.
Ophthalmol Glaucoma ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004222

ABSTRACT

PURPOSE: To compare safety, effectiveness and baseline predictors of failure in standalone primary Xen45 gel stent (Xen) vs trabeculectomy (Trab) in glaucoma. DESIGN: Retrospective study SUBJECTS: Subjects that underwent primary Xen or Trab augmented by mitomycin-C with at least 12 months follow-up. METHODS: Multinational observational study of eyes in the Fight Glaucoma Blindness international registry MAIN OUTCOME MEASURES: The primary outcome was success at 12 months defined by IOP reduction ≥ 20% from baseline and ≤ threshold IOPs of 15mmHg, 18mmHg and 21mmHg with (qualified) or without (complete) medications and without secondary glaucoma surgery. Multivariable mixed effects cox regression models were used to identify risk factors for failure in each cohort. RESULTS: 701 eyes (Xen, 308; Trab, 393) of 596 subjects were included with baseline IOP being significantly higher (22.4 vs 19.9 mmHg, p < 0.001) and baseline medications significantly lower in the Xen vs the Trab group (2.9 vs 3.4, p <0.001). Baseline visual field (VF) mean deviation (MD) was less severe in the Xen group (-9.47 vs -13.04 dB, p < 0.001). The proportion of complete surgical success was significantly lower in the Xen vs Trab group across the three upper IOP limits at 12 months; 32% vs 52% at 15mmHg, 37% vs 54% at 18mmHg, and 39% vs 55% at 21mmHg (p < 0.001). The incidence of post-operative numerical and symptomatic hypotony was lower in the Xen vs Trab group. In the Xen cohort, a higher failure rate was associated with Asian ethnicity (HR, 1.97; 95% CI, 1.03-3.79) and use of oral acetazolamide at baseline (HR, 1.74; 1.13-2.70), while a lower failure rate was associated with diagnosis of ocular hypertension/open angle glaucoma suspect (HR, 0.52; 0.28-0.94) and secondary open angle glaucoma (HR, 0.45; 0.25-0.8). Exposure to prostaglandin analogue was associated with greater failure in the Trab group (HR, 2.66; 1.18-6.01). CONCLUSIONS: There was significantly greater complete success at 12 months across all complete success definitions for Trab compared to Xen, while the rate of post-operative hypotony was significantly lower in Xen group. Asian ethnicity and use of oral acetazolamide at baseline were associated with greater failure in Xen, while exposure to prostaglandin analogue was associated with greater failure in Trab patients. Such baseline predictors of success and failure may help guide patient selection for subconjunctival minimally invasive glaucoma surgery in patients undergoing surgical intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...