Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Sci Rep ; 14(1): 18026, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098981

ABSTRACT

Ballistic impacts on human thorax without penetration can produce severe injuries or even death of the carrier. Soft tissue finite element models must capture the non-linear elasticity and strain-rate dependence to accurately estimate the dynamic human mechanical response. The objective of this work is the calibration of a visco-hyperelastic model for soft tissue simulants. Material model parameters have been calculated by fitting experimental stress-strain relations obtained from the literature using genetic algorithms. Several parametric analyses have been carried out during the definition of the optimization algorithm. In this way, we were able to study different optimization strategies to improve the convergence and accuracy of the final result. Finally, the genetic algorithm has been applied to calibrate two different soft tissue simulants: ballistic gelatin and styrene-ethylene-butylene-styrene. The algorithm is able to calculate the constants for visco-hyperelastic constitutive equations with high accuracy. Regarding synthetic stress-strain curves, a short computational time has been shown when using the semi-free strategy, leading to high precision results in stress-strain curves. The algorithm developed in this work, whose code is included as supplementary material for the reader use, can be applied to calibrate visco-hyperelastic parameters from stress-strain relations under different strain rates. The semi-free relaxation time strategy has shown to obtain more accurate results and shorter convergence times than the other strategies studied. It has been also shown that the understanding of the constitutive models and the complexity of the stress-strain objective curves is crucial for the accuracy of the method.


Subject(s)
Algorithms , Elasticity , Finite Element Analysis , Stress, Mechanical , Humans , Viscosity , Models, Biological , Biomechanical Phenomena , Gelatin/chemistry
2.
Molecules ; 29(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203002

ABSTRACT

Bone grafting is crucial for bone regeneration. Recent studies have proposed the use of calcium citrate (CC) as a potential graft material. Notably, citrate does not inhibit hydroxyapatite (HAp) formation at specific calcium-to-citrate molar ratios. Octacalcium phosphate (OCP)/gelatine (Gel) composites, which are commonly produced from porcine Gel, are valued for their biodegradability and bone replacement capability. This study introduces fish Gel as an alternative to porcine Gel because of its wide acceptance and eco-friendliness. This is the first study to examine the interaction effects between two osteogenic materials, OCP/CC, and the influence of different gelatine matrix components on HAp formation in an SBF. Samples with varying CC contents were immersed in an SBF for 7 d and analysed using various techniques, confirming that high CC doses prevent HAp formation, whereas lower doses facilitate it. Notably, small-sized OCP/CC/porcine Gel composites exhibit a high HAp generation rate. Porcine Gel composites form denser HAp clusters, whereas fish Gel composites form larger spherical HAps. This suggests that lower CC doses not only avoid inhibiting HAp formation but also enhance it with the OCP/Gel composite. Compared with porcine Gel, fish Gel composites show less nucleation but an increased crystal growth for HAp.


Subject(s)
Bone Regeneration , Calcium Citrate , Durapatite , Gelatin , Durapatite/chemistry , Gelatin/chemistry , Bone Regeneration/drug effects , Animals , Swine , Calcium Citrate/chemistry , Body Fluids/chemistry , Body Fluids/metabolism , Calcium Phosphates/chemistry , Bone Substitutes/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
3.
Materials (Basel) ; 17(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39203117

ABSTRACT

This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B≤160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr') and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr' and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr', η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace.

4.
Int J Pharm ; 662: 124546, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39097154

ABSTRACT

Biopolymers application in biomedical areas has been limited due to the physicochemical degradation that occurs using conventional processing/sterilization methods (e.g., steam heat, γ-radiation, ethylene oxide). Aiming to avoid/minimize degradation and preserve their properties, supercritical carbon dioxide (scCO2) has been proposed as an alternative sterilization method for such materials. ScCO2 can simultaneously be used as a drying method to produce aerogels (i) and sterilize them (ii). However, a solvent exchange is required to prepare the alcogel from hydrogel, achievable through high-pressure solvent exchange (HPSE) (iii). This study integrated three processes: HPSE, scCO2 drying, and sterilization to prepare alginate-gelatine sterilized aerogels. Two scCO2 sterilization methods were tested. Results showed that sterilization did not compromise the aerogels' chemical, thermal and swelling properties. Conversely, Young's Modulus increased, and BET surface area decreased, due to the structural changes caused by the fast pressurization/depressurization rates applied during sterilization. Regarding the sterilization efficiency, results showed a reduction in contamination throughout the process, achieving a SAL of 10-4. The sterilized aerogels were non-cytotoxic in vitro and showed improved wound-healing properties. The innovative integrated process produced decontaminated/sterile and ready-to-use aerogels reducing process time by 75 %, from 2 days up to 12 h without compromising the aerogel's properties.


Subject(s)
Alginates , Carbon Dioxide , Gelatin , Gels , Sterilization , Alginates/chemistry , Gelatin/chemistry , Sterilization/methods , Carbon Dioxide/chemistry , Gels/chemistry , Animals , Wound Healing/drug effects , Hydrogels/chemistry , Glucuronic Acid/chemistry , Solvents/chemistry , Mice , Hexuronic Acids/chemistry
5.
J Med Eng Technol ; 48(2): 64-76, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39018330

ABSTRACT

Wound healing requires a substantial amount of moisture for faster recovery. Completely hydrophobic or hydrophilic biomaterials are not suitable to be applied for cell growth in wounded areas. The study aimed to prepare a nanofibrous scaffold from the blend of a solution of hydrophobic PLA and a solution of hydrophilic gelatine. The stability of the blend was achieved using a surfactant and an electrospun nanofibrous scaffold was made out of the solution. The optimum composition of gelatine and PLA to make a scaffold of uniform fibre diameter was achieved with the help of conductivity, viscosity and FESEM analysis. The optimum scaffold was characterised by TGA, DSC and XRD analysis. The water contact angle of the optimum sample was observed at 27°. The blended scaffold was found non-toxic to cells and showed a 30% faster healing of wounds in the rat model test compared to the healing rate of the PLA scaffold or the gelatine scaffold alone. The histological assay also supported the blend scaffold as an encouraging material for tissue regeneration.


Subject(s)
Gelatin , Hydrophobic and Hydrophilic Interactions , Nanofibers , Polyesters , Tissue Scaffolds , Wound Healing , Gelatin/chemistry , Animals , Nanofibers/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Rats , Wound Healing/drug effects , Biocompatible Materials/chemistry , Regeneration/drug effects , Tissue Engineering , Rats, Wistar , Male
6.
EFSA J ; 22(7): e8883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015303

ABSTRACT

The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.

7.
Antioxidants (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929146

ABSTRACT

In this research, bio-based films were developed using polyelectrolyte complexes derived from chitosan and gelatin for packaging fish oil. To further enhance the antioxidant functionality, the films were enriched with gallic acid and orange essential oils, either individually or in combination. Initially, the films were characterized for their physico-chemical, optical, surface, and barrier properties. Subsequently, the phenolic compounds and antioxidant capacity of the films were assessed. Finally, the films were tested as antioxidant cover lids for packaging fish oil, which was then stored at ambient temperature for 30 days, with periodical monitoring of oil oxidation parameters. This study revealed that the inclusion of gallic acid-induced possible crosslinking effects, as evidenced by changes in moisture content, solubility, and liquid absorption. Additionally, shifts in the FTIR spectral bands suggested the binding of gallic acid and/or phenols in orange essential oils to CSGEL polymer chains, with noticeable alterations in film coloration. Notably, films containing gallic acid exhibited enhanced UV barrier properties crucial for preserving UV-degradable food compounds. Moreover, formulations with gallic acid demonstrated decreased water vapor permeability, while samples containing orange essential oils had lower CO2 permeability levels. Importantly, formulations containing both gallic acid and essential oils showed a synergistic effect and a significant antioxidant capacity, with remarkable DPPH inhibition rates of up to 88%. During the 30-day storage period, fish oil experienced progressive oxidation, as indicated by an increase in the K232 value in control samples. However, films incorporating gallic acid or orange essential oils as active antioxidants, even used as indirect food contact, effectively delayed the oxidation, highlighting their protective benefits. This study underscores the potential of sustainable bio-based films as natural antioxidant packaging for edible fish oil or fresh fish, offering a promising tool for enhancing food preservation while reducing its waste.

8.
Forensic Sci Int ; 361: 112099, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865898

ABSTRACT

The wounding potential of a projectile depends on its kinetic energy. The aim of the study was to investigate the deceleration of non-deforming full metal jacket handgun bullets (FMJ) in gelatine blocks of increasing length. The temporary cavity (TC) was visualized using a SA-X2 Photron camera. 126 test shots in 9 mm nominal calibre were fired under strict temperature control conditions (4°C) at small gelatine blocks ranging from 2 to 12 cm in length. The deposited energy was calculated based on the loss of bullet velocity through high-speed video analysis. The length of the TC was measured, when the TC reached its maximum height. The volume of the TC was approximated by a cylinder. Regression analysis showed a linear correlation between the length of the bullet path and the energy transfer. The constant deceleration of the FMJ bullets in gelatine up to 12 cm bullet path was confirmed across various brands and velocity ranges (270-450 m/s). Higher impact velocities correlated with increased loss of energy in the target medium. The shape of the bullet tip influenced the characteristic of deceleration. The volume of the tubular temporary cavity, derived from high-speed video records, was found to be proportional to the energy transferred. The proposed approach might be a valuable tool in advancing wound ballistics research.

9.
Eur J Pharm Biopharm ; 201: 114370, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880402

ABSTRACT

The difficulty in swallowing is a frequent problem when oral solid dosage forms (conventional tablets or capsules) are administered to paediatric population or patients with dysphagia. An interesting alternative to overcome these problems are non-conventional formulations like chewable gels, commonly known as 'gummies'. Therefore, this work addresses the design, development and characterization of gummies using gelatine and pectin, for the vehiculization of the antiarrhythmic amiodarone (AMIO). Applying a Design of Experiments (DoE) approach, four gelatine (GG1-GG4) and eight pectin formulations (PG1-PG8) were developed. Considering the obtained results for responses during DoE evaluation (i.e., volume, syneresis, hardness, and gumminess), GG3 and PG8 were selected for complete characterization. Water activity, pH, drug content, texture parameters (adhesiveness, springiness, cohesiveness, and fracturability), disintegration time, in vitro dissolution, and microbiological features were evaluated. The obtained results were within the expected values for this type of formulation. The dissolution profiles showed a 94 % - 99 % of the AMIO content released for GG3 and PG8, respectively, so they could be considered suitable as immediate release dosage forms. In conclusion, the chewable gels were successfully developed and characterised, suggesting a potential means to accomplish a final prototype for the improvement of congenital cardiopathies treatment.


Subject(s)
Amiodarone , Anti-Arrhythmia Agents , Gels , Heart Defects, Congenital , Pectins , Amiodarone/administration & dosage , Amiodarone/chemistry , Humans , Pectins/chemistry , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/chemistry , Heart Defects, Congenital/drug therapy , Gelatin/chemistry , Animals , Child , Administration, Oral , Drug Liberation , Drug Compounding/methods , Solubility , Chemistry, Pharmaceutical/methods
10.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893573

ABSTRACT

Graphene oxide (GO) has attracted huge attention in biomedical sciences due to its outstanding properties and potential applications. In this study, we synthesized GO using our recently developed 1-pyrenebutyric acid-assisted method and assessed how the GO as a filler influences the mechanical properties of GO-gelatine nanocomposite dry films as well as the cytotoxicity of HEK-293 cells grown on the GO-gelatine substrates. We show that the addition of GO (0-2%) improves the mechanical properties of gelatine in a concentration-dependent manner. The presence of 2 wt% GO increased the tensile strength, elasticity, ductility, and toughness of the gelatine films by about 3.1-, 2.5-, 2-, and 8-fold, respectively. Cell viability, apoptosis, and necrosis analyses showed no cytotoxicity from GO. Furthermore, we performed circular dichroism, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses to decipher the interactions between GO and gelatine. The results show, for the first time, that GO enhances the mechanical properties of gelatine by forming non-covalent intermolecular interactions with gelatine at its amorphous or disordered regions. We believe that our findings will provide new insight and help pave the way for potential and wide applications of GO in tissue engineering and regenerative biomedicine.


Subject(s)
Gelatin , Graphite , Graphite/chemistry , Gelatin/chemistry , Humans , HEK293 Cells , Tensile Strength , Cell Survival/drug effects , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry
11.
Int J Legal Med ; 138(5): 2003-2013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38772948

ABSTRACT

The use of ordnance gelatine has been widespread in the field of ballistics as a simulant for soft tissue when assessing ballistic threats. However, the traditional method of preparing ordnance gelatine is time-consuming and requires precision to ensure that the final mold meets the required specifications. Furthermore, temperature control is necessary post-production, and there are limitations on its usage duration. To address these issues, manufacturers have developed pre-mixed, gelatine-like products that are stable at room temperature and require less preparation time. Nonetheless, it is uncertain whether these new products can perform in the same manner as the gold standard of ordnance gelatine. This study used five types of blocks, including ordnance gelatine (10% and 20%), Clear Ballistics (10% and 20%) and Perma-Gel (10%) and subjected them to 9 mm, 0.380 Auto fired from a universal receiver and a 5.56 × 45 mm ammunition fired by a certified firearms instructor. Delta-V and total energy dissipation were measured after each test using data collected from ballistic chronographs placed in front of and behind each block. High-speed video was recorded, and a cut-down analysis conducted. The findings revealed variations in energy dissipation and fissure formation within the block, with greater energy based on fissure formation observed in the ordnance gelatine. Additionally, the high-speed video showed the occurrence of secondary combustions occurring in the premixed gelatines.


Subject(s)
Forensic Ballistics , Gelatin , Wounds, Gunshot , Forensic Ballistics/methods , Humans , Models, Biological
12.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732231

ABSTRACT

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Subject(s)
Biocompatible Materials , Gelatin , Hydrogels , Regenerative Medicine , Tissue Scaffolds , Gelatin/chemistry , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Humans , Tissue Engineering/methods , Cross-Linking Reagents/chemistry
13.
J Colloid Interface Sci ; 671: 15-33, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38788421

ABSTRACT

The exploration of bifunctional electrocatalysts with high activity, stability, and economy is of great significance in promoting the development of water splitting. Herein, a dual active sites heterostructure NiCoS/NC was designed to be derived in situ on 3D N-doped porous carbon (NC) using gelatin as a nitrogen and carbon source. The characterization of experiments suggests that nanoflower-like Ni2CoS4 (abbreviated as NiCoS) was randomly distributed on the NC substrate, and the sheet-like NC formed a highly open porous network structure resembling a honeycomb, which provided more accessible active sites for electrolyte ions. In addition, the special nanostructures of the catalyst materials help to promote the surface reconstruction to the real active substance NiOOH/CoOOH, and the double active sites synergistically reduce the overpotential of OER and improve its kinetics. DFT (Density-functional theory) calculations reveal the electronic coupling of NiCoS/NC in atomic orbitals, modulation of electrons by the heterointerface and N-doping, and synergistic effect of dual active sites improving the inherent catalytic activity. The NiCoS/NC composite electrocatalyst exhibited a 177 mV small OER overpotential and a 132 mV small HER overpotential with Faraday efficiencies as high as 96 % and 98 % at 10 mA cm-2 current density. In the two-electrode system, it also requires only an ultra-low voltage of 1.52 V to achieve a 10 mA cm-2 current density, and it shows excellent long-term water splitting stability. This provides a new idea for the development of transition metal-based bifunctional electrocatalysts.

14.
Acta Biomater ; 181: 188-201, 2024 06.
Article in English | MEDLINE | ID: mdl-38642788

ABSTRACT

In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with ß-Lactoglobulin (ß-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the ß-LG layer on the surface of network-like scaffolds. The ß-LG-coated scaffolds exhibited improved swelling capacity as a function of the ß-LG concentration. Compared to ADA-GEL/PDA scaffolds, the ß-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of ß-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of ß-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. ß-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of ß-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with ß-Lactoglobulin (ß-LG), represents a novel approach to potentially enhance subchondral bone repair. ß-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.


Subject(s)
Alginates , Bone Regeneration , Coated Materials, Biocompatible , Gelatin , Indoles , Lactoglobulins , Polymers , Tissue Scaffolds , Alginates/chemistry , Alginates/pharmacology , Indoles/chemistry , Indoles/pharmacology , Tissue Scaffolds/chemistry , Animals , Polymers/chemistry , Polymers/pharmacology , Bone Regeneration/drug effects , Gelatin/chemistry , Sheep , Lactoglobulins/chemistry , Lactoglobulins/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Aldehydes/chemistry , Cell Proliferation/drug effects
15.
Int J Legal Med ; 138(4): 1357-1368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570340

ABSTRACT

Gunshot wound analysis is an important part of medicolegal practice, in both autopsies and examinations of living persons. Well-established and studied simulants exist that exhibit both physical and biomechanical properties of soft-tissues and bones. Current research literature on ballistic wounds focuses on the biomechanical properties of skin simulants. In our extensive experimental study, we tested numerous synthetic and natural materials, regarding their macromorphological bullet impact characteristics, and compared these data with those from real bullet injuries gathered from medicolegal practice. Over thirty varieties of potential skin simulants were shot perpendicularly, and at 45°, at a distance of 10 m and 0.3 m, using full metal jacket (FMJ) projectiles (9 × 19 mm Luger). Simulants included ballistic gelatine at various concentrations, dental silicones with several degrees of hardness, alginates, latex, chamois leather, suture trainers for medical training purposes and various material compound models. In addition to complying to the general requirements for a synthetic simulant, results obtained from dental silicones shore hardness 70 (backed with 20 % by mass gelatine), were especially highly comparable to gunshot entry wounds in skin from real cases. Based on these results, particularly focusing on the macroscopically detectable criteria, we can strongly recommend dental silicone shore hardness 70 as a skin simulant for wound ballistics examinations.


Subject(s)
Forensic Ballistics , Gelatin , Skin , Wounds, Gunshot , Wounds, Gunshot/pathology , Forensic Ballistics/methods , Humans , Skin/injuries , Skin/pathology , Latex , Silicones , Models, Biological , Hardness
16.
Food Technol Biotechnol ; 62(1): 110-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601965

ABSTRACT

Research background: Meat and meat products are essential sources of dietary saturated fatty acids. However, excessive consumption of meat and meat products may be harmful to human health. The study evaluates the effect of fat replacement with hydrogels (olive oil in water emulsions gelled by gelatine) in meatballs. Experimental approach: The effect of replacing fat with different ratios of hydrogel (control, 25 (F25), 50 (F50), 75 (F75) and 100 % (F100)) on the chemical (fatty acids and thiobarbituric acid reactive substances (TBARS)) and physical (cooking loss, diameter reduction, fat retention, water retention, colour and texture analysis) characteristics of the meatballs were analyzed. Results and conclusions: The fat content of raw meatball samples was reduced from (31.2±2.2) to (10.5±0.4) % in the sample with the highest fat substitution (F100). The energy levels of the F100 samples were almost 56 % lower than of the control group. Monounsaturated fatty acids (MUFAs) represented the dominant group in all substitution rates of the meatballs, followed by saturated fatty acids (SFAs) and finally polyunsaturated fatty acids (PUFAs). Among the raw meatball samples, the highest oxidation occurred in the F50 and F100 groups. However, it was determined that the difference between F25 and F75 and the difference between control and F75 were not statistically significant (p˃0.05). When the cooked samples were compared, the highest thiobarbituric acid (TBA) value was found in the F50 sample, followed by the F100 and F75 samples. The difference between the mean values of springiness and cohesiveness of the samples was not significant (p˃0.05). The hardness value of samples decreased significantly (p˂0.001) with >75 % fat replacement. Novelty and scientific contribution: It can be concluded that the oil replacement rate that may satisfy consumer demand without impairing the product technological and chemical quality should be <75 %. As the fat replacement ratio increases, the SFA content of cooked meatballs decreases, while the MUFA and PUFA contents increase. Considering the positive effects of reducing the intake of SFAs and increasing the intake of unsaturated fatty acids on non-communicable diseases such as cardiovascular diseases, fat replacement in meatballs is important for future developments.

17.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673918

ABSTRACT

Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.


Subject(s)
Gelatin , Polysaccharides , Gelatin/chemistry , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Plastics/chemistry , Biopolymers/chemistry , Carrageenan/chemistry , Calorimetry, Differential Scanning , Sepharose/chemistry , Biodegradable Plastics/chemistry
18.
Mar Drugs ; 22(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667786

ABSTRACT

Lumpfish (Cyclopterus lumpus) is an underutilized marine resource that is currently only being exploited for roe. Lumpfish skin was pre-treated with alkali (0.1M NaOH) and acid (0.1M HCl) at a skin to chemical ratio of 1:10 for 24 h at 5 °C to remove non-collagenous proteins and minerals. The pre-treated skin was washed, and gelatine was extracted with 0.1M of acetic acid at three different ratios (1:5, 1:10, and 1:15), time (12,18, and 24 h), and temperature combinations (12, 28, and 24 °C). The highest total extraction yield (>40%) was obtained with combinations of extraction ratios of 1:15 and 1:10 with a longer time (24 h) and higher temperature (18-24 °C). The highest gelatine content was obtained with an extraction period of 24 h and ratio of 1:10 (>80%). SDS-PAGE analysis confirmed the presence of type-I collagen. A rheological evaluation indicated melting and gelling temperatures, gel strength, and viscosity properties comparable to existing cold-water gelatine sources.


Subject(s)
Gelatin , Skin , Animals , Gelatin/chemistry , Skin/chemistry , Skin/metabolism , Hydrolysis , Fishes , Temperature , Perciformes , Collagen Type I/chemistry , Viscosity , Fish Proteins/isolation & purification , Fish Proteins/chemistry
19.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474144

ABSTRACT

In tissue engineering (TE), the support structure (scaffold) plays a key role necessary for cell adhesion and proliferation. The protein constituents of the extracellular matrix (ECM), such as collagen, its derivative gelatine, and elastin, are the most attractive materials as possible scaffolds. To improve the modest mechanical properties of gelatine, a strategy consists of crosslinking it, as naturally occurs for collagen, which is stiffened by the oxidative action of lysyl oxidase (LO). Here, a novel protocol to crosslink gelatine has been developed, not using the commonly employed crosslinkers, but based on the formation of imine bonds or on aldolic condensation reactions occurring between gelatine and properly synthesized copolymers containing amine residues via LO-mediated oxidation. Particularly, we first synthesized and characterized an amino butyl styrene monomer (5), its copolymers with dimethylacrylamide (DMAA), and its terpolymer with DMAA and acrylic acid (AA). Three acryloyl amidoamine monomers (11a-c) and their copolymers with DMAA were then prepared. A methacrolein (MA)/DMAA copolymer already possessing the needed aldehyde groups was finally developed to investigate the relevance of LO in the crosslinking process. Oxidation tests of amine copolymers with LO were performed to identify the best substrates to be used in experiments of gelatine reticulation. Copolymers obtained with 5, 11b, and 11c were excellent substrates for LO and were employed with MA/DMAA copolymers in gelatine crosslinking tests in different conditions. Among the amine-containing copolymers, that obtained with 5 (CP5/DMMA-43.1) afforded a material (M21) with the highest crosslinking percentage (71%). Cytotoxicity experiments carried out on two cell lines (IMR-32 and SH SY5Y) with the analogous (P5) of the synthetic constituent of M21 (CP5/DMAA) had evidenced no significant reduction in cell viability, but proliferation promotion, thus establishing the biocompatibility of M21 and the possibility to develop it as a new scaffold for TE, upon further investigations.


Subject(s)
Amines , Gelatin , Gelatin/chemistry , Aldehydes , Collagen/chemistry , Polymers
20.
Int J Biol Macromol ; 263(Pt 2): 130380, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395277

ABSTRACT

By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.


Subject(s)
Fibroins , Nanofibers , Rats , Animals , Fibroins/pharmacology , Fibroins/chemistry , Osteogenesis , Durapatite/pharmacology , Durapatite/chemistry , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Biomimetics , Bone Regeneration , Silk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL