Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.328
Filter
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38989909

ABSTRACT

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Subject(s)
Cell Adhesion Molecules , Drosophila Proteins , Evolution, Molecular , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Phylogeny , Gene Duplication , Drosophila/genetics , Culicidae/genetics
2.
Insect Biochem Mol Biol ; : 104161, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059715

ABSTRACT

Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear. The analysis of the sequences from different lineages did not detect positive selection as driving the divergence of InR1 and InR3, discarding neofunctionalization, and suggesting that there is no functional divergence between both gene copies. Using the cockroach Blattella germanica as a model, we have determined that BgInR2 is the gene with the highest expression levels in all the tissues analyzed, both in adult females and males, as well as in nymphs and embryos. BgInR3 is second in expression levels while BgInR1 is expressed at lower levels and only in some tissues. The selective depletion by RNAi of each of the three InRs, analyzed in terms of phenotype and fat body transcriptomic profiles, resulted in essentially redundant effects, with a magnitude approximately proportional to the level of expression of the respective InR. Therefore, the results indicate that the InR duplicates likely experienced a subfunctionalization process, by which the three InRs maintained similar functions but contributing to those functions proportionally to their expression levels.

3.
Genome Biol Evol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985750

ABSTRACT

The photopigment-encoding visual opsin genes that mediate colour perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analysed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; H. atriceps-H. fasciatus; and an individual H. curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognised. Alternatively, selection pressures specific to aquatic environments could favour improved chromatic distinction in just some lineages.

4.
Ecol Evol ; 14(7): e11652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952658

ABSTRACT

Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.

5.
Evol Appl ; 17(7): e13753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006007

ABSTRACT

Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three-spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced-representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage-specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.

6.
Cell ; 187(15): 3936-3952.e19, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38936359

ABSTRACT

Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.


Subject(s)
Gene Duplication , Gene Editing , Genome, Human , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , DNA/genetics , Animals , Embryonic Stem Cells/metabolism , Chromosomes, Human/genetics
7.
Proc Biol Sci ; 291(2024): 20240555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865605

ABSTRACT

Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.


Subject(s)
Gene Duplication , Evolution, Molecular , Animals , Biological Evolution , Selection, Genetic , Genome
8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892461

ABSTRACT

The Sirtuin (SIRT1-7) family comprises seven evolutionary-conserved enzymes that couple cellular NAD availability with health, nutrition and welfare status in vertebrates. This study re-annotated the sirt3/5 branch in the gilthead sea bream, revealing three paralogues of sirt3 (sirt3.1a/sirt3.1b/sirt3.2) and two of sirt5 (sirt5a/sirt5b) in this Perciform fish. The phylogeny and synteny analyses unveiled that the Sirt3.1/Sirt3.2 dichotomy was retained in teleosts and aquatic-living Sarcopterygian after early vertebrate 2R whole genome duplication (WGD). Additionally, only certain percomorphaceae and gilthead sea bream showed a conserved tandem-duplicated synteny block involving the mammalian-clustered sirt3.1 gene (psmd13-sirt3.1a/b-drd4-cdhr5-ctsd). Conversely, the expansion of the Sirt5 branch was shaped by the teleost-specific 3R WGD. As extensively reviewed in the literature, human-orthologues (sirt3.1/sirt5a) showed a high, conserved expression in skeletal muscle that increased as development advanced. However, recent sirt3.2 and sirt5b suffered an overall muscle transcriptional silencing across life, as well as an enhanced expression on immune-relevant tissues and gills. These findings fill gaps in the ontogeny and differentiation of Sirt genes in the environmentally adaptable gilthead sea bream, becoming a good starting point to advance towards a full understanding of its neo-functionalization. The mechanisms originating from these new paralogs also open new perspectives in the study of cellular energy sensing processes in vertebrates.


Subject(s)
Evolution, Molecular , Phylogeny , Sea Bream , Sirtuins , Synteny , Animals , Sea Bream/genetics , Sea Bream/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Multigene Family , Fish Proteins/genetics , Fish Proteins/metabolism , Vertebrates/genetics
9.
Proc Natl Acad Sci U S A ; 121(24): e2218927121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830094

ABSTRACT

Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 xyloglucanase paralogs retained in P. sojae. Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in Nicotiana benthamiana triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.


Subject(s)
Gene Transfer, Horizontal , Glycoside Hydrolases , Phylogeny , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Phytophthora/pathogenicity , Phytophthora/genetics , Plant Diseases/microbiology , Plant Diseases/parasitology , Evolution, Molecular , Gene Duplication
10.
J Mol Evol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861038

ABSTRACT

Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.

11.
Vision Res ; 222: 108447, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906036

ABSTRACT

Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.

12.
Insect Mol Biol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923717

ABSTRACT

Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.

13.
Mol Phylogenet Evol ; 198: 108134, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901473

ABSTRACT

Glycoside hydrolases are enzymes that break down complex carbohydrates into simple sugars by catalyzing the hydrolysis of glycosidic bonds. There have been multiple instances of adaptive horizontal gene transfer of genes belonging to various glycoside hydrolase families from microbes to insects, as glycoside hydrolases can metabolize constituents of the carbohydrate-rich plant cell wall. In this study, we characterize the horizontal transfer of a gene from the glycoside hydrolase family 26 (GH26) from bacteria to insects of the order Hemiptera. Our phylogenies trace the horizontal gene transfer to the common ancestor of the superfamilies Pentatomoidea and Lygaeoidea, which include stink bugs and seed bugs. After horizontal transfer, the gene was assimilated into the insect genome as indicated by the gain of an intron, and a eukaryotic signal peptide. Subsequently, the gene has undergone independent losses and expansions in copy number in multiple lineages, suggesting an adaptive role of GH26s in some insects. Finally, we measured tissue-level gene expression of multiple stink bugs and the large milkweed bug using publicly available RNA-seq datasets. We found that the GH26 genes are highly expressed in tissues associated with plant digestion, especially in the principal salivary glands of the stink bugs. Our results are consistent with the hypothesis that this horizontally transferred GH26 was co-opted by the insect to aid in plant tissue digestion and that this HGT event was likely adaptive.


Subject(s)
Gene Transfer, Horizontal , Glycoside Hydrolases , Hemiptera , Phylogeny , Animals , Hemiptera/genetics , Hemiptera/enzymology , Hemiptera/classification , Glycoside Hydrolases/genetics , Plants/genetics , Plants/classification
14.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38864488

ABSTRACT

The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), is a significant soybean pest in the Americas, which inflicts more physical damage on soybean than other native stink bugs. Studies suggest that its heightened impact is attributed to the aggressive digestive properties of its saliva. Despite its agricultural importance, the factors driving its greater ability to degrade plant tissues have remained unexplored in a genomic evolutionary context. In this study, we hypothesized that lineage-specific gene family expansions have increased the copy number of digestive genes expressed in the salivary glands. To investigate this, we annotated a previously published genome assembly of the redbanded stink bug, performed a comparative genomic analysis on 11 hemipteran species, and reconstructed patterns of gene duplication, gain, and loss in the redbanded stink bug. We also performed RNA-seq on the redbanded stink bug's salivary tissues, along with the rest of the body without salivary glands. We identified hundreds of differentially expressed salivary genes, including a subset lost in other stink bug lineages, but retained and expressed in the redbanded stink bug's salivary glands. These genes were significantly enriched with protein families involved in proteolysis, potentially explaining the redbanded stink bug's heightened damage to soybeans. Contrary to our hypothesis, we found no support for an enrichment of duplicated digestive genes that are also differentially expressed in the salivary glands of the redbanded stink bug. Nonetheless, these results provide insight into the evolution of this important crop pest, establishing a link between its genomic history and its agriculturally important physiology.


Subject(s)
Glycine max , Heteroptera , Transcriptome , Animals , Glycine max/genetics , Heteroptera/genetics , Salivary Glands/metabolism , Genomics , Genome, Insect , Saliva
15.
Am J Bot ; : e16350, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825760

ABSTRACT

PREMISE: The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS: We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS: The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS: Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.

16.
Curr Genet ; 70(1): 6, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733432

ABSTRACT

The gene products of PRS1-PRS5 in Saccharomyces cerevisiae are responsible for the production of PRPP (5-phospho-D-ribosyl-α-1-pyrophosphate). However, it has been demonstrated that they are also involved in the cell wall integrity (CWI) signalling pathway as shown by protein-protein interactions (PPIs) with, for example Slt2, the MAP kinase of the CWI pathway. The following databases: SGD, BioGRID and Hit Predict, which collate PPIs from various research papers, have been scrutinized for evidence of PPIs between Prs1-Prs5 and components of the CWI pathway. The level of certainty in PPIs was verified by interaction scores available in the Hit Predict database revealing that well-documented interactions correspond with higher interaction scores and can be graded as high confidence interactions based on a score > 0.28, an annotation score ≥ 0.5 and a method-based high confidence score level of ≥ 0.485. Each of the Prs1-Prs5 polypeptides shows some degree of interaction with the CWI pathway. However, Prs5 has a vital role in the expression of FKS2 and Rlm1, previously only documented by reporter assay studies. This report emphasizes the importance of investigating interactions using more than one approach since every method has its limitations and the use of different methods, as described herein, provides complementary experimental and statistical data, thereby corroborating PPIs. Since the experimental data described so far are consistent with a link between PRPP synthetase and the CWI pathway, our aim was to demonstrate that these data are also supported by high-throughput bioinformatic analyses promoting our hypothesis that two of the five PRS-encoding genes contain information required for the maintenance of CWI by combining data from our targeted approach with relevant, unbiased data from high-throughput analyses.


Subject(s)
Cell Wall , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Wall/metabolism , Cell Wall/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Protein Interaction Maps , Protein Interaction Mapping
17.
Plant Physiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743633

ABSTRACT

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

18.
Genome ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.

19.
Biomolecules ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785927

ABSTRACT

Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.


Subject(s)
Caspases , Inflammation , Humans , Animals , Inflammation/metabolism , Inflammation/genetics , Caspases/metabolism , Caspases/genetics , Caspases/chemistry , Evolution, Molecular , Lipopolysaccharides , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Inflammasomes/metabolism , Gram-Negative Bacteria
20.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38809718

ABSTRACT

Gene duplication is an important substrate for the evolution of new gene functions, but the impacts of gene duplicates on their own activities and on the developmental networks in which they act are poorly understood. Here, we use a natural experiment of lin-12/Notch gene duplication within the nematode genus Caenorhabditis, combined with characterization of loss- and gain-of-function mutations, to uncover functional distinctions between the duplicate genes in 1 species (Caenorhabditis briggsae) and their single-copy ortholog in Caenorhabditis elegans. First, using improved genomic sequence and gene model characterization, we confirm that the C. briggsae genome includes 2 complete lin-12 genes, whereas most other genes encoding proteins that participate in the LIN-12 signaling pathway retain a one-to-one orthology with C. elegans. We use CRISPR-mediated genome editing to introduce alleles predicted to cause gain-of-function (gf) or loss-of-function (lf) into each C. briggsae gene and find that the gf mutations uncover functional distinctions not apparent from the lf alleles. Specifically, Cbr-lin-12.1(gf), but not Cbr-lin-12.2(gf), causes developmental defects similar to those observed in Cel-lin-12(gf). In contrast to Cel-lin-12(gf), however, the Cbr-lin-12.1(gf) alleles do not cause dominant phenotypes as compared to the wild type, and the mutant phenotype is observed only when 2 gf alleles are present. Our results demonstrate that gene duplicates can exhibit differential capacities to compensate for each other and to interfere with normal development, and uncover coincident gene duplication and evolution of developmental sensitivity to LIN-12/Notch activity.


Subject(s)
Caenorhabditis elegans Proteins , Evolution, Molecular , Gene Duplication , Receptors, Notch , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...