Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943073

ABSTRACT

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Subject(s)
Introns , Introns/genetics , Animals , Humans , Arabidopsis/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
2.
Fish Shellfish Immunol ; : 109720, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945413

ABSTRACT

Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.

3.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927038

ABSTRACT

The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.


Subject(s)
Peroxisome Proliferator-Activated Receptors , Animals , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Fishes/genetics , Fishes/metabolism
4.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790178

ABSTRACT

Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Expression Regulation/genetics , Transcription, Genetic , Enhancer Elements, Genetic
5.
Plant Sci ; 344: 112080, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582272

ABSTRACT

Chamaecyparis obtusa and C. obtusa var. formosana of the Cupressaceae family are well known for their fragrance and excellent physical properties. To investigate the biosynthesis of unique diterpenoid compounds, diterpene synthase genes for specialized metabolite synthesis were cloned from C. obtusa and C. obtusa var. formosana. Using an Escherichia coli co-expression system, eight diterpene synthases (diTPSs) were characterized. CoCPS and CovfCPS are class II monofunctional (+)-copalyl diphosphate synthases [(+)-CPSs]. Class I monofunctional CoLS and CovfLS convert (+)-copalyl diphosphate [(+)-CPP] to levopimaradiene, CoBRS, CovfBRS1, and CovfBRS3 convert (+)-CPP to (-)-beyerene, and CovfSDS converts (+)-CPP to (-)-sandaracopimaradiene. These enzymes are all monofunctional diterpene syntheses in Cupressaceae family of gymnosperm, and differ from those in Pinaceae. The discovery of the enzyme responsible for the biosynthesis of tetracyclic diterpene (-)-beyerene was characterized for the first time. Diterpene synthases with different catalytic functions exist in closely related species within the Cupressaceae family, indicating that this group of monofunctional diterpene synthases is particularly prone to the evolution of new functions and development of species-specific specialized diterpenoid constituents.


Subject(s)
Alkyl and Aryl Transferases , Chamaecyparis , Diterpenes , Phylogeny , Diterpenes/metabolism , Chamaecyparis/genetics , Chamaecyparis/metabolism , Chamaecyparis/enzymology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cupressaceae/genetics , Cupressaceae/metabolism , Cupressaceae/enzymology , Evolution, Molecular
6.
BMC Genomics ; 25(1): 350, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589807

ABSTRACT

BACKGROUND: In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS: A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION: Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.


Subject(s)
Inositol 1,4,5-Trisphosphate , Phosphotransferases (Alcohol Group Acceptor) , Animals , Inositol 1,4,5-Trisphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phylogeny , Plants/genetics , Plants/metabolism , Evolution, Molecular
7.
Fish Shellfish Immunol ; 147: 109433, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336143

ABSTRACT

SRC gene encodes scavenger receptor class C, a member of the scavenger receptor family, and has only been identified and investigated in invertebrates. Our previous studies have revealed that SRC is a novel candidate gene associated with body weight in Pacific white shrimp (Litopenaeus vannamei). In order to comprehend the underlying mechanism by which LvSRC affects shrimp growth, we analyzed the structure, phylogeny, expression profiles and RNA interference (RNAi) of this gene in L. vannamei. We found that LvSRC contains two CCP domains and one MAM domain, with the highest expression level in the heart and relatively low expression level in other tissues. Notably, LvSRC exhibited significantly higher expression levels in the fast-growing group among groups with different growth rates, suggesting its potential involvement as a gene contributing to the growth of L. vannamei. RNAi of LvSRC inhibited body length and body weight gain compared to the control groups. Moreover, through RNA-seq analysis, we identified 598 differentially expressed genes (DEGs), including genes associated with growth, immunity, protein processing and modification, signal transduction, lipid synthesis and metabolism. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant changes in the signaling pathways related to growth, lipid metabolism and immune response, suggesting that LvSRC exhibits the potential to participate in diverse physiological processes and immune regulation. These findings deepen our understanding of the structure and function of the SRC in shrimp and lay the foundation for further research into the regulatory mechanism of LvSRC. Additionally, they provide potential applications in shrimp genetics and breeding.


Subject(s)
Genes, src , Penaeidae , Animals , Signal Transduction , Gene Expression Profiling , Body Weight , Receptors, Scavenger/genetics
8.
Evol Appl ; 17(1): e13625, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283601

ABSTRACT

Recent work has demonstrated that many bee species have specific cytochrome P450 enzymes (P450s) that can efficiently detoxify certain insecticides. The presence of these P450s, belonging or closely related to the CYP9Q subfamily (CYP9Q-related), is generally well conserved across the diversity of bees. However, the alfalfa leafcutter bee, Megachile rotundata, lacks CYP9Q-related P450s and is 170-2500 times more sensitive to certain insecticides than bee pollinators with these P450s. The extent to which these findings apply to other Megachilidae bee species remains uncertain. To address this knowledge gap, we sequenced the transcriptomes of four Megachile species and leveraged the data obtained, in combination with publicly available genomic data, to investigate the evolution and function of P450s in the Megachilidae. Our analyses reveal that several Megachilidae species, belonging to the Lithurgini, Megachilini and Anthidini tribes, including all species of the Megachile genus investigated, lack CYP9Q-related genes. In place of these genes Megachile species have evolved phylogenetically distinct CYP9 genes, the CYP9DM lineage. Functional expression of these P450s from M. rotundata reveal they lack the capacity to metabolize the neonicotinoid insecticides thiacloprid and imidacloprid. In contrast, species from the Osmiini and Dioxyini tribes of Megachilidae have CYP9Q-related P450s belonging to the CYP9BU subfamily that are able to detoxify thiacloprid. These findings provide new insight into the evolution of P450s that act as key determinants of insecticide sensitivity in bees and have important applied implications for pesticide risk assessment.

9.
BMC Genomics ; 25(1): 20, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166654

ABSTRACT

Glycoside hydrolase family 1 (GH1) ß-glucosidases (BGLUs), are encoded by a large number of genes, which participate in the development and stress response of plants, particularly under biotic and abiotic stresses through the activation of phytohormones. However, there are few studies systematically analyzing stress or hormone-responsive BGLU genes in alfalfa. In this study, a total of 179 BGLU genes of the glycoside hydrolase family 1 were identified in the genome of alfalfa, and then were classified into five distinct clusters. Sequence alignments revealed several conserved and unique motifs among these MsBGLU proteins. Many cis-acting elements related to abiotic stresses and phytohormones were identified in the promoter of some MsBGLUs. Moreover, RNA-seq and RT-qPCR analyses showed that these MsBGLU genes exhibited distinct expression patterns in response to different abiotic stress and hormonal treatments. In summary, this study suggests that MsBGLU genes play crucial roles in response to various abiotic stresses and hormonal responses, and provides candidate genes for stress tolerance breeding in alfalfa.


Subject(s)
Medicago sativa , Plant Growth Regulators , Medicago sativa/genetics , Plant Breeding , Stress, Physiological/genetics , Glycoside Hydrolases/genetics , Phylogeny , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Front Genet ; 14: 1288453, 2023.
Article in English | MEDLINE | ID: mdl-38028611

ABSTRACT

Introduction: The Capsicum annuum nuclear factor Y subunit B (CaNFYB) gene family plays a significant role in diverse biological processes, including plant responses to abiotic stressors such as salinity. Methods: In this study, we provide a comprehensive analysis of the CaNFYB gene family in pepper, encompassing their identification, structural details, evolutionary relationships, regulatory elements in promoter regions, and expression profiles under salinity stress. Results and discussion: A total of 19 CaNFYB genes were identified and subsequently characterized based on their secondary protein structures, revealing conserved domains essential for their functionality. Chromosomal distribution showed a non-random localization of these genes, suggesting potential clusters or hotspots for NFYB genes on specific chromosomes. The evolutionary analysis focused on pepper and comparison with other plant species indicated a complex tapestry of relationships with distinct evolutionary events, including gene duplication. Moreover, promoter cis-element analysis highlighted potential regulatory intricacies, with notable occurrences of light-responsive and stress-responsive binding sites. In response to salinity stress, several CaNFYB genes demonstrated significant temporal expression variations, particularly in the roots, elucidating their role in stress adaptation. Particularly CaNFYB01, CaNFYB18, and CaNFYB19, play a pivotal role in early salinity stress response, potentially through specific regulatory mechanisms elucidated by their cis-elements. Their evolutionary clustering with other Solanaceae family members suggests conserved ancestral functions vital for the family's survival under stress. This study provides foundational knowledge on the CaNFYB gene family in C. annuum, paving the way for further research to understand their functional implications in pepper plants and relative species and their potential utilization in breeding programs to enhance salinity tolerance.

11.
PeerJ ; 11: e16332, 2023.
Article in English | MEDLINE | ID: mdl-37927789

ABSTRACT

In plants, ARRs-B transcription factors play a crucial role in regulating cytokinin signal transduction, abiotic stress resistance, and plant development. A number of adverse environmental conditions have caused severe losses for the pepper (Capsicum annuum L.)-a significant and economically important vegetable. Among the transcription factors of the type B-ARRs family, multiple members have different functions. In pepper, only a few members of the ARRs-B family have been reported and characterized. The current study aimed to characterize ARRs-B transcription factors in C. annuum, including phylogenetic relationships, gene structures, protein motif arrangement, and RT-qPCR expression analyses and their role in salinity stress. In total, ten genes encode CaARRs-B transcription factors (CaARR1 to CaARR10) from the largest subfamily of type-B ARRs were identified in C. annum. The genome-wide analyses of the CaARRs-B family in C. annuum were performed based on the reported ARRs-B genes in Arabidopsis. An analysis of homologous alignments of candidate genes, including their phylogenetic relationships, gene structures, conserved domains, and qPCR expression profiles, was conducted. In comparison with other plant ARRs-B proteins, CaARRs-B proteins showed gene conservation and potentially specialized functions. In addition, tissue-specific expression profiles showed that CaARRs-B genes were differentially expressed, suggesting functionally divergent. CaARRs-B proteins had a typical conserved domain, including AAR-like (pfam: PF00072) and Myb DNA binding (pfam: PF00249) domains. Ten of the CaARRs-B genes were asymmetrically mapped on seven chromosomes in Pepper. Additionally, the phylogenetic tree of CaARRs-B genes from C. annuum and other plant species revealed that CaARRs-B genes were classified into four clusters, which may have evolved conservatively. Further, using quantitative real-time qRT-PCR, the study assessed the expression patterns of CaARRs-B genes in Capsicum annuum seedlings subjected to salt stress. The study used quantitative real-time qRT-PCR to examine CaARRs-B gene expression in Capsicum annuum seedlings under salt stress. Roots exhibited elevated expression of CaARR2 and CaARR9, while leaves showed decreased expression for CaARR3, CaARR4, CaARR7, and CaARR8. Notably, no amplification was observed for CaARR10. This research sheds light on the roles of CaARRs-B genes in pepper's response to salinity stress. These findings enrich our comprehension of the functional implications of CaARRs-B genes in pepper, especially in responding to salinity stress, laying a solid groundwork for subsequent in-depth studies and applications in the growth and development of Capsicum annuum.


Subject(s)
Arabidopsis , Genome-Wide Association Study , Phylogeny , Transcription Factors/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Salt Stress/genetics , Arabidopsis/genetics
12.
Front Plant Sci ; 14: 1279502, 2023.
Article in English | MEDLINE | ID: mdl-37941661

ABSTRACT

Plant defensins are widely distributed in the leaves, fruits, roots, stems, seeds, and tubers. Research shows that defensin in plants play a significant role in physiological metabolism, growth and development. Plant defensins can kill and suppress a variety of pathogenic bacteria. In this study, we understand the phylogenetic relationships, protein characterization, chromosomal localization, promoter and gene structural features of the TaPDFs family through sequence alignment and conserved protein structural domain analysis. A total of 73 PDF gene members in wheat, 15 PDF genes in maize, and 11 PDF genes in rice were identified. A total of 35, 65, and 34 PDF gene members were identified in the genomes of Ae. tauschii, T. urartu, and T. dicoccoides, respectively. TaPDF4.9 and TaPDF2.15 were constructed into pART27 vector with YFP by homologous recombination for subcellular localization analysis. Subcellular localization results showed that TaPDF4.9 and TaPDF2.15 were basically located in the cell membrane and cytoplasm, and TaPDF4.9 was also located in the nucleus. TaPDF4.9 and TaPDF2.15 could inhibit the infection of Phytophthora infestans strain '88069'. The results suggest that TaPDFs may be able to improve disease resistance. The study of wheat defensins will be beneficial for improving wheat yield and provides a theoretical basis for research on resistance to wheat diseases.

13.
Plants (Basel) ; 12(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005779

ABSTRACT

Nitrate transporters (NRTs) actively take up and transform nitrate (N) to form a large family with many members and distinct functions in plant growth and development. However, few studies have identified them in the context of low nitrate concentrations in Chinese cabbage (Brassica rapa L. ssp. Pekinensis), an important vegetable in China. This study focuses on the identification and analysis of the nitrate transporter 1 (NRT1) gene family as well as various aspects, including its phylogenic distribution, chromosomal position, gene structure, conserved motifs, and duplication pattern. Using bioinformatics methods, we identified and analyzed 84 BrNRT1 genes distributed on ten chromosomes. Furthermore, we conducted an analysis of the expression profile of the NRT1 gene in various tissues of Chinese cabbage exposed to varying nitrate concentrations. A phylogenetic analysis revealed that BrNRT1s members are distributed in six distinct groups. Based on an analysis of gene structure and conserved motifs, it can be inferred that BrNRT1 exhibits a generally conserved structural pattern. The promoters of BrNRT1 were discovered to contain moosefs (MFS) elements, suggesting their potential role in the regulation of NO3- transport across the cell membrane in Chinese cabbage. A transcriptome study and a subsequent RT-qPCR analysis revealed that the expression patterns of some BrNRT1 genes were distinct to specific tissues. This observation implies these genes may contribute to nitrate uptake and transport in various tissues or organs. The results offer fundamental insights into investigating the NRT1 gene family in Chinese cabbage. These results provide basic information for future research on the functional characterization of NRT1 genes in Chinese cabbage and the elucidation of the molecular mechanisms underlying low nitrogen tolerance in Chinese cabbage.

14.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834136

ABSTRACT

Proteins encoded by the G-box regulating factor (GRF, also called 14-3-3) gene family are involved in protein-protein interactions and mediate signaling transduction, which play important roles in plant growth, development, and stress responses. However, there were no detailed investigations of the GRF gene family in pear at present. In this study, we identified 25 GRF family members in the pear genome. Based on a phylogenetic analysis, the 25 GRF genes were clustered into two groups; the ε group and the non-ε group. Analyses of the exon-intron structures and motifs showed that the gene structures were conserved within each of the ε and non-ε groups. Gene duplication analysis indicated that most of the PbGRF gene expansion that occurred in both groups was due to WGD/segmental duplication. Phosphorylation sites analysis showed that the main phosphorylation sites of PbGRF proteins were serine residues. For gene expression, five PbGRF genes (PbGRF7, PbGRF11, PbGRF16, PbGRF21, and PbGRF23) were highly expressed in fruits, and PbGRF18 was highly expressed in all tissues. Further analysis revealed that eight PbGRF genes were significantly differentially expressed after treatment with different sugars; the expression of PbGRF7, PbGRF8, and PbGRF11 significantly increased, implying the involvement of these genes in sugar signaling. In addition, subcellular localization studies showed that the tested GRF proteins localize to the plasma membrane, and transgenic analysis showed that PbGRF18 can increase the sugar content in tomato leaves and fruit. The results of our research establish a foundation for functional determination of PbGRF proteins, and will help to promote a further understanding of the regulatory network in pear fruit development.


Subject(s)
Pyrus , Pyrus/metabolism , Phylogeny , Multigene Family , Gene Duplication , Sugars/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
15.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762550

ABSTRACT

Unknown functional domain (DUF) proteins constitute a large number of functionally uncharacterized protein families in eukaryotes. DUF724s play crucial roles in plants. However, the insight understanding of wheat TaDUF724s is currently lacking. To explore the possible function of TaDUF724s in wheat growth and development and stress response, the family members were systematically identified and characterized. In total, 14 TaDUF724s were detected from a wheat reference genome; they are unevenly distributed across the 11 chromosomes, and, according to chromosome location, they were named TaDUF724-1 to TaDUF724-14. Evolution analysis revealed that TaDUF724s were under negative selection, and fragment replication was the main reason for family expansion. All TaDUF724s are unstable proteins; most TaDUF724s are acidic and hydrophilic. They were predicted to be located in the nucleus and chloroplast. The promoter regions of TaDUF724s were enriched with the cis-elements functionally associated with growth and development, as well as being hormone-responsive. Expression profiling showed that TaDUF724-9 was highly expressed in seedings, roots, leaves, stems, spikes and grains, and strongly expressed throughout the whole growth period. The 12 TaDUF724 were post-transcription regulated by 12 wheat MicroRNA (miRNA) through cleavage and translation. RT-qPCR showed that six TaDUF724s were regulated by biological and abiotic stresses. Conclusively, TaDUF724s were systematically analyzed using bioinformatics methods, which laid a theoretical foundation for clarifying the function of TaDUF724s in wheat.


Subject(s)
Genome, Plant , Triticum , Triticum/metabolism , Multigene Family , Computational Biology/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny , Gene Expression Profiling/methods
16.
Plants (Basel) ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765498

ABSTRACT

MADS-box transcription factors play important roles in many organisms. These transcription factors are involved in processes such as the formation of the flower organ structure and the seed development of plants. Ginkgo biloba has two genome versions (version 2019 and version 2021), and there is no analysis or comparison of the MADS-box gene family in these two genomes. In this study, 26 and 20 MADS-box genes were identified from the two genomes of Ginkgo, of which 12 pairs of genes reached more than 80% similarity. According to our phylogenetic analysis results, we divided these genes into type I (Mα and Mγ subfamilies) and type II (MIKC and Mδ subfamilies) members. We found that both sets of genomes lacked the Mß gene, while the MIKC gene was the most numerous. Further analysis of the gene structure showed that the MIKC genes in the two genomes had extralong introns (≥20 kb); these introns had different splicing patterns, and their expression might be more abundant. The gene expression analysis proved that GbMADS genes were expressed to varying degrees in eight Ginkgo biological tissues. Type II GbMADS genes not only were found to be related to female flower bud differentiation and development but also are important in seed development. Therefore, MADS-box genes may play important roles in the development of Ginkgo reproductive organs, which may suggest a genetic role in sexual differentiation. This study further contributes to the research on MADS-box genes and provides new insights into sex determination in Ginkgo.

17.
Front Plant Sci ; 14: 1210632, 2023.
Article in English | MEDLINE | ID: mdl-37476177

ABSTRACT

L-aspartate oxidase (AO) is the first enzyme in NAD+ biosynthesis and is widely distributed in plants, animals, and microorganisms. Recently, AO family members have been reported in several plants, including Arabidopsis thaliana and Zea mays. Research on AO in these plants has revealed that AO plays important roles in plant growth, development, and biotic stresses; however, the nature and functions of AO proteins in wheat are still unclear. In this study, nine AO genes were identified in the wheat genome via sequence alignment and conserved protein domain analysis. These nine wheat AO genes (TaAOs) were distributed on chromosomes 2, 5, and 6 of sub-genomes A, B, and D. Analysis of the phylogenetic relationships, conserved motifs, and gene structure showed that the nine TaAOs were clustered into three groups, and the TaAOs in each group had similar conserved motifs and gene structure. Meanwhile, the subcellular localization analysis of transient expression mediated by Agrobacterium tumetioniens indicated that TaAO3-6D was localized to chloroplasts. Prediction of cis-elements indicated that a large number of cis-elements involved in responses to ABA, SA, and antioxidants/electrophiles, as well as photoregulatory responses, were found in TaAO promoters, which suggests that the expression of TaAOs may be regulated by these factors. Finally, transcriptome and real-time PCR analysis showed that the expression of TaAOs belonging to Group III was strongly induced in wheat infected by F. graminearum during anthesis, while the expression of TaAOs belonging to Group I was heavily suppressed. Additionally, the inducible expression of TaAOs belonging to Group III during anthesis in wheat spikelets infected by F. graminearum was repressed by ABA. Finally, expression of almost all TaAOs was induced by exposure to cold treatment. These results indicate that TaAOs may participate in the response of wheat to F. graminearum infection and cold stress, and ABA may play a negative role in this process. This study lays a foundation for further investigation of TaAO genes and provides novel insights into their biological functions.

18.
Plants (Basel) ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447098

ABSTRACT

Dehydration-responsive element-binding (DREB) transcription factors (TFs) of the A1 and A2 subfamilies involved in plant stress responses have not yet been reported in Allium species. In this study, we used bioinformatics and comparative transcriptomics to identify and characterize DREB A1 and A2 genes redundant in garlic (Allium sativum L.) and analyze their expression in A. sativum cultivars differing in the sensitivity to cold and Fusarium infection. Eight A1 (AsaDREB1.1-1.8) and eight A2 (AsaDREB2.1-2.8) genes were identified. AsaDREB1.1-1.8 genes located in tandem on chromosome 1 had similar expression patterns, suggesting functional redundancy. AsaDREB2.1-2.8 were scattered on different chromosomes and had organ- and genotype-specific expressions. AsaDREB1 and AsaDREB2 promoters contained 7 and 9 hormone- and stress-responsive cis-regulatory elements, respectively, and 13 sites associated with TF binding and plant development. In both Fusarium-resistant and -sensitive cultivars, fungal infection upregulated the AsaDREB1.1-1.5, 1.8, 2.2, 2.6, and 2.8 genes and downregulated AsaDREB2.5, but the magnitude of response depended on the infection susceptibility of the cultivar. Cold exposure strongly upregulated the AsaDREB1 genes, but downregulated most AsaDREB2 genes. Our results provide the foundation for further functional analysis of the DREB TFs in Allium crops and could contribute to the breeding of stress-tolerant varieties.

19.
J Agric Food Chem ; 71(24): 9187-9200, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289517

ABSTRACT

Polysaccharides derived from lactic acid bacteria (LAB) have widespread industrial applications owing to their excellent safety profile and numerous biological properties. The antioxidant activity of exopolysaccharides (EPS) offers defense against disease conditions caused by oxidative stress. Several genes and gene clusters are involved in the biosynthesis of EPS and the determination of their structures, which play an important role in modulating their antioxidant ability. Under conditions of oxidative stress, EPS are involved in the activation of the nonenzyme (Keap1-Nrf2-ARE) response pathway and enzyme antioxidant system. The antioxidant activity of EPS is further enhanced by the targeted alteration of their structures, as well as by chemical methods. Enzymatic modification is the most commonly used method, though physical and biomolecular methods are also frequently used. A detailed summary of the biosynthetic processes, antioxidant mechanisms, and modifications of LAB-derived EPS is presented in this paper, and their gene-structure-function relationship has also been explored.


Subject(s)
Lactobacillales , Lactobacillales/genetics , Lactobacillales/metabolism , Antioxidants/metabolism , Polysaccharides, Bacterial/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism
20.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373405

ABSTRACT

Thaumatin-like proteins (TLPs) are pathogenesis-related proteins with pivotal roles in plant defense mechanisms. In this study, various bioinformatics and RNA-seq methods were used to analyze the biotic and abiotic stress responses of the TLP family in Phyllostachys edulis. Overall, 81 TLP genes were identified in P. edulis; 166 TLPs from four plant species were divided into three groups and ten subclasses, with genetic covariance observed between these species. Subcellular localization in silico studies indicated that TLPs were primarily distributed in the extracellular. Analysis of the upstream sequences of TLPs demonstrated the presence of cis-acting elements related to disease defense, environmental stress, and hormonal responses. Multiple sequence alignment demonstrated that most TLPs possessed five conserved REDDD amino acid sequences with only a few amino acid residue differences. RNA-seq analysis of P. edulis responses to Aciculosporium take, the pathogenic fungus that causes witches' broom disease, showed that P. edulis TLPs (PeTLPs) were expressed in different organs, with the highest expression in buds. PeTLPs responded to both abscisic acid and salicylic acid stress. These PeTLP expression patterns were consistent with their gene and protein structures. Collectively, our findings provide a basis for further comprehensive analyses of the genes related to witches' broom in P. edulis.


Subject(s)
Phytoplasma Disease , Poaceae , Poaceae/genetics , Amino Acid Sequence , Plants , Fungi
SELECTION OF CITATIONS
SEARCH DETAIL
...