Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 468
Filter
1.
Heliyon ; 10(11): e32532, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961935

ABSTRACT

Background: Although previous studies have reported a bidirectional relationship between ischemic stroke (IS) and epilepsy, the existence of a causal nexus and its directionality remains a topic of controversy. Methods: The single nucleotide polymorphisms (SNPs) associated with IS were extracted from the Genome-Wide Association Study (GWAS) database. Pooled genetic data encompassing all epilepsy cases, as well as generalized and focal epilepsy subtypes, were acquired from the International League Against Epilepsy's GWAS study. In this study, the primary analysis approach utilized the inverse variance weighting (IVW) method as the main analytical technique. To enhance the robustness of the findings against potential pleiotropy, additional sensitivity analyses were conducted. Results: In the forward analysis, the IVW method demonstrated that IS was associated with an increased risk of all epilepsy (odds ratio (OR) = 1.127, 95 % confidence interval (CI) = 1.038-1.224, P = 0.004) and generalized epilepsy (IVW: OR = 1.340, 95 % CI = 1.162-1.546, P = 5.70 × 10-5). There was no substantial causal relationship observed between IS and focal epilepsy (P > 0.05). Furthermore, generalized epilepsy, focal epilepsy, and all epilepsy did not show a causal relationship with IS. Conclusion: This Mendelian randomization (MR) analysis demonstrates that IS increases the risk of developing epilepsy, especially generalized epilepsy. Conversely, no clear causal association was found between epilepsy and the onset of stroke. Therefore, the possible mechanisms of the effect of epilepsy on the pathogenesis of IS still need to be further investigated.

2.
Neurosurg Focus Video ; 11(1): V18, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957429

ABSTRACT

The centromedian (CM) nucleus of the thalamus is a promising target for a range of brain diseases including drug-resistant generalized and multifocal epilepsy. CM is highly connected to cortical and subcortical regions including frontoparietal/sensorimotor cortex, striatum, brainstem, and cerebellum, which are involved in some generalized epilepsy syndromes like Lennox-Gastaut syndrome (LGS). In this video, the authors describe their methodology for targeting CM for deep brain stimulation (DBS). Delineation of an optimal and consistent target will expand the efficacy of neuromodulation of CM in intractable epilepsy. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID245.

3.
Epilepsy Behav ; 158: 109910, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959746

ABSTRACT

Epilepsy is characterized by recurrent, chronic, and unprovoked seizures. Epilepsy has a significant negative impact on a patient's quality of life even if seizures are well controlled. In addition to the distress caused by seizures, patients with epilepsy (PwE) may suffer from cognitive impairment with serious social consequences such as poor interpersonal relationships, loss of employment, and reduced social networks. Pathological changes and functional connectivity abnormalities observed in PwE can disrupt the neural network responsible for the theory of mind. Theory of mind is the ability to attribute mental states to other people (intentions, beliefs, and emotions). It is a complex aspect of social cognition and includes cognitive and affective constructs. In recent years, numerous studies have assessed the relationship between social cognition, including the theory of mind, in PwE, and suggested impairment in this domain. Interventions targeting the theory of mind can be potentially helpful in improving the quality of life of PwE.

4.
Cureus ; 16(5): e59991, 2024 May.
Article in English | MEDLINE | ID: mdl-38854234

ABSTRACT

INTRODUCTION: Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS:  We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS: From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION: This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.

5.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875478

ABSTRACT

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

6.
Front Neurol ; 15: 1385468, 2024.
Article in English | MEDLINE | ID: mdl-38694773

ABSTRACT

The risk of sudden unexpected death in epilepsy (SUDEP) increases with the frequency of generalized tonic-clonic seizures. Carbamazepine (CBZ) and lamotrigine (LTG) have been suggested to increase the risk. However, the prevailing viewpoint is that the choice of antiseizure medication (ASM) does not influence the occurrence. We have explored the approach to addressing this question in relevant studies to evaluate the validity of the conclusions reached. A systematic search was performed in PubMed to identify all controlled studies on SUDEP risk in individuals on CBZ or LTG. Studies were categorized according to whether idiopathic generalized epilepsy (IGE) or females were considered separately, and whether data were adjusted for seizure frequency. Eight studies on CBZ and six studies on LTG were identified. For CBZ, one study showed a significantly increased risk of SUDEP without adjustment for seizure frequency. Another study found significantly increased risk after statistical adjustment for seizure frequency and one study found increased risk with high blood levels. Five other studies found no increase in risk. For LTG, one study showed a significantly increased risk in patients with IGE as opposed to focal epilepsy, and another study showed a significantly increased risk in females. None of the subsequent studies on LTG and none of the studies on CBZ considered females with IGE separately. Taken together the available studies suggest that LTG, and possibly CBZ, may increase occurrence of SUDEP when used in females with IGE. Additional studies with sub-group analysis of females with IGE are needed.

7.
J Clin Med ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792473

ABSTRACT

While significant strides have been made in comprehending the pathophysiology and treatment of epilepsy, further investigation is warranted to elucidate the factors impacting its development and transmission, particularly within familial contexts. This study sought to explore the prevalence and risk factors associated with epilepsy in the offspring of patients with epilepsy who were treated at a tertiary epilepsy center. Adult patients with confirmed epilepsy (PWE) receiving outpatient care were consecutively enrolled, starting from January 2021 to January 2023. Data were recorded for various variables, including age, gender, epilepsy pathophysiology, cognitive impairment, and family history of epilepsy. Descriptive statistics, various statistical tests, and multivariate logistic regression analyses were employed to analyze the data. A total of 1456 PWE were included. Among them, 463 patients (31.8%) had children. Twenty-five patients had offspring diagnosed with epilepsy, representing a prevalence of 5.4%. Analysis of the offspring with epilepsy revealed older ages, a higher proportion of parents with idiopathic epilepsy, and a greater prevalence of a positive family history of epilepsy. Multivariate logistic regression analysis demonstrated a significant association between a family history of epilepsy and increased epilepsy risk in offspring. Genetic syndrome-immanent predisposition, advanced age, and a family history of epilepsy were identified as significant risk factors for epilepsy in offspring by means of this mono-center study.

8.
Epilepsia Open ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819591

ABSTRACT

OBJECTIVE: This prospective study aimed to delineate the demographics, natural progression, and treatment response of patients newly diagnosed with epilepsy with generalized tonic-clonic seizures alone (EGTCA). Furthermore, our objective includes assessing the seizure recurrence rate post antiseizure medication (ASM) discontinuation within this cohort, alongside exploring predictive factors for seizure relapse. METHODS: The study cohort, derived from an ongoing, prospective, multicenter investigation on children and adults with new-onset unprovoked seizures, included consecutive patients enrolled between March 2010 and March 2020, and meeting mandatory ILAE criteria for EGTCA diagnosis. Participants underwent a 3-h sleep-deprived video-EEG recording along with an epilepsy protocol brain magnetic resonance imaging (MRI) with repeat EEG at each follow-up. Cumulative time-dependent probabilities of seizure recurrence were calculated using Kaplan-Meier survival analysis. Logistic regression identified variables associated with seizure recurrence following ASM taper. RESULTS: Eighty-nine patients with a median age of 16 years were included, constituting 31% of those diagnosed with an idiopathic generalized epilepsy. Regarding the circadian distribution of seizures, 59.6% of patients exclusively experienced diurnal seizures, 12.4% exclusively nocturnal, and 28.1% experienced both diurnal and nocturnal seizures. Generalized spike-wave discharges (GSWD) were present in the initial EEG of 88% of patients. A GTC recurred in 14% of patients treated with ASM compared with 73% of untreated patients (p < 0.00001). ASM discontinuation was attempted in 50 patients after a median treatment duration of 3 years, with 44% experiencing a recurrence. Patient-initiated taper and a mixed circadian seizure pattern independently predicted a higher likelihood of recurrence post-ASM discontinuation. SIGNIFICANCE: Our findings underscore the importance of prompt treatment upon the diagnosis of EGTCA. Notably, lifelong treatment may not be imperative; patients seizure-free for at least 2 years, with the absence of GSWD on EEG, often maintained seizure freedom after ASM withdrawal, especially with physician-initiated tapering. PLAIN LANGUAGE SUMMARY: Seizures in individuals diagnosed with "epilepsy with generalized tonic-clonic seizures alone" (EGTCA) typically start during adolescence and often respond well to antiseizure medications. An electroencephalogram, which measure brain waves, will show abnormal discharges in most patients with EGTCA. Lifelong treatment with antiseizure medication is not necessary for everyone with EGTCA; approximately, 40% can successfully stop treatment without facing seizure recurrence. Patients who stop medication on their own have a higher risk of seizures returning compared with those who undergo cessation under a doctor's supervision.

9.
Seizure ; 118: 53-57, 2024 May.
Article in English | MEDLINE | ID: mdl-38640571

ABSTRACT

INTRODUCTION: Déjà vu (DV), a French term meaning "already seen," refers to inappropriate sensation of familiarity in the present moment, as if it had been experienced before without a specific recollection of when or where. Traditionally, DV has been closely associated with focal seizures originating from the medial temporal lobe. However, there are occasional reports of DV occurring in idiopathic generalized epilepsies (IGEs). The objective of our study was to assess the presence and frequency of DV in individuals with IGE. METHODS: We used the Preferred Reporting Items for Systematic Review and Meta-Analysis for protocols (PRISMA-P) and searched PubMed and Embase from January 2000 to July 2022. RESULTS: 5 studies were included with a total of 1177 IGE and 1026 with temporal lobe epilepsy (TLE) patients. The frequency of DV in IGE ranged from 0 to 11 %, and the average was 3 %, compared to 19.6 % in TLE. Broadly, 40 % of patients with IGE reported some type of aura. EEG correlation of DV in IGE was not appropriately evaluated in the studies. CONCLUSION: Clinicians should be aware that individuals with IGE may experience DV and other types of auras. Recognizing these auras is crucial in order to avoid misdiagnosing IGE as focal epilepsy. This is important to prevent unnecessary investigations and incorrect treatment decisions.


Subject(s)
Deja Vu , Epilepsy, Generalized , Humans , Epilepsy, Generalized/physiopathology , Epilepsy, Generalized/diagnosis
10.
Epilepsy Res ; 202: 107362, 2024 May.
Article in English | MEDLINE | ID: mdl-38652996

ABSTRACT

OBJECTIVE: Epilepsy with generalized tonic-clonic seizures alone (GTCA) is the least studied syndrome within the idiopathic generalized epilepsy (IGE) spectrum. We characterize a large cohort of adult patients with GTCA to understand natural history and drug responsiveness. METHODS: In this retrospective single-center study using our epilepsy electronic record, we evaluated clinical characteristics, seizure outcomes, anti-seizure medication (ASM) response including seizure recurrence after ASM withdrawal, and sex differences in a cohort of GTCA patients aged ≥17 years. RESULTS: Within a cohort of 434 IGE patients, 87 patients (20 %) with GTCA were included. The mean age was 34.9 years (range 17-73 years). Forty-six patients (52.8 %) were females. Seventy-two patients (82.8 %) were seizure-free and 15 (17.2 %) had active epilepsy over the previous 12 months. Thirty-four patients (39.1 %) had ≤5 lifetime seizures, aligning with a prior definition of 'oligoepilepsy'. Sixty-five patients (74.7 %) were treated with monotherapy, 19 (21.8 %) were treated with polytherapy, and three were not taking any ASM. Levetiracetam (37.9 %) was the most commonly prescribed ASM, followed by lamotrigine (32.1 %) and valproate (31 %). Seventeen patients (19.5 %) attempted to withdraw their ASM. The rate of seizure recurrence after ASM withdrawal was 88.2 % (15/17), including two patients who relapsed more than 20 years after ASM discontinuation. Females had more seizures in their lifetime and had trialed more ASM compared to males. SIGNIFICANCE: GTCA has a relatively good prognosis, with most patients becoming seizure-free on monotherapy. The high rate of seizure recurrence after ASM withdrawal supports lifetime seizure susceptibility. We found potential sex differences in seizure outcomes and ASM response, although further research is needed to validate this finding.


Subject(s)
Anticonvulsants , Epilepsy, Generalized , Seizures , Humans , Adult , Female , Male , Middle Aged , Young Adult , Adolescent , Anticonvulsants/therapeutic use , Retrospective Studies , Aged , Seizures/drug therapy , Seizures/physiopathology , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/physiopathology , Tertiary Care Centers , Treatment Outcome
11.
Clin Neurophysiol ; 162: 82-90, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603948

ABSTRACT

OBJECTIVE: Focal seizure symptoms (FSS) and focal interictal epileptiform discharges (IEDs) are common in patients with idiopathic generalized epilepsies (IGEs), but dedicated studies systematically quantifying them both are lacking. We used automatic IED detection and localization algorithms and correlated these EEG findings with clinical FSS for the first time in IGE patients. METHODS: 32 patients with IGEs undergoing long-term video EEG monitoring were systematically analyzed regarding focal vs. generalized IEDs using automatic IED detection and localization algorithms. Quantitative EEG findings were correlated with FSS. RESULTS: We observed FSS in 75% of patients, without significant differences between IGE subgroups. Mostly varying/shifting lateralizations of FSS across successive recorded seizures were seen. We detected a total of 81,949 IEDs, whereof 19,513 IEDs were focal (23.8%). Focal IEDs occurred in all patients (median 13% focal IEDs per patient, range 1.1 - 51.1%). Focal IED lateralization and localization predominance had no significant effect on FSS. CONCLUSIONS: All included patients with IGE showed focal IEDs and three-quarter had focal seizure symptoms irrespective of the specific IGE subgroup. Focal IED localization had no significant effect on lateralization and localization of FSS. SIGNIFICANCE: Our findings may facilitate diagnostic and treatment decisions in patients with suspected IGE and focal signs.


Subject(s)
Electroencephalography , Epilepsy, Generalized , Humans , Epilepsy, Generalized/physiopathology , Epilepsy, Generalized/diagnosis , Electroencephalography/methods , Electroencephalography/standards , Male , Female , Adult , Adolescent , Young Adult , Middle Aged , Child
12.
Expert Rev Clin Pharmacol ; 17(5-6): 423-432, 2024.
Article in English | MEDLINE | ID: mdl-38571335

ABSTRACT

INTRODUCTION: Epilepsies are a group of heterogeneous brain disorder, and antiseizure medications (ASMs) are the mainstay of treatment. Despite the availability of more than 30 drugs, at least one third of individuals with epilepsy are drug-resistant. This emphasizes the need for novel compounds that combine efficacy with improved tolerability. AREAS COVERED: A literature review on the pharmacology, efficacy, tolerability, and safety of azetukalner (XEN1101), a second-generation opener of neuronal potassium channels currently in Phase 3 development as ASM. EXPERT OPINION: Results from the phase 2b clinical trial strongly support the ongoing clinical development of azetukalner as a new ASM. Its pharmacokinetic properties support convenient once-daily dosing, eliminating the need for titration at initiation or tapering at the conclusion of treatment. CYP3A4 is the main enzyme involved in its metabolism and drug-drug interactions can affect the drug exposure. Preliminary analysis of an ongoing open-label study reveals no reported pigmentary abnormalities. The upcoming Phase 3 clinical trials are expected to provide further insight into the efficacy, tolerability, and safety of azetukalner in treating focal-onset and primary generalized tonic-clonic seizures. Structurally distinct from currently marketed ASMs, azetukalner has the potential to be the only-in-class Kv7.2/7.3 opener on the market upon regulatory approval.


Subject(s)
Anticonvulsants , Drug Interactions , Epilepsy , Humans , Anticonvulsants/pharmacology , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Anticonvulsants/pharmacokinetics , Epilepsy/drug therapy , Animals , Drug Development , Drug Resistant Epilepsy/drug therapy , Cytochrome P-450 CYP3A/metabolism
13.
Neurol Res ; 46(7): 626-633, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643974

ABSTRACT

BACKGROUND AND PURPOSE: Childhood absence epilepsy (CAE) has a typical electroencephalography (EEG) pattern of generalized 3 Hz spike and wave discharges (SWD). Focal interictal discharges were also documented in a small number of documents. The aim was to investigate the amplitudes of interictal 3 Hz SWD within the 1st second in drug-naïve CAE patients. In this way, areas with maximal electronegativity at the beginning of clinically generalized discharges will be documented. METHODS: The EEG records of children with drug-naïve CAE were evaluated retrospectively by two child neurologists first for 3 Hz SWD. Then, a machine-learning model evaluated the amplitudes of 3 Hz in the 1st second of SWD. Maximum electronegativity areas were documented and classified as focal, bilateral, and generalized. RESULTS: One hundred and twelve 3 Hz SWD were evaluated in 11 patients. Among discharges within the 1st second, maximum electronegativity areas were documented as focal for 44 (39.2%), bilateral for 8 (7.1%), generalized for 60 (53.5%). Among focal electronegativity areas, mostly right central, left occipital and midline parietal areas were documented in 12 (10.7%), 7 (6.2%), and 6 (5.3%), respectively. Eight (7.1%) of the maximum electronegativity areas were detected bilaterally, of which 7 (6.2%) originated from the frontopolar areas. CONCLUSIONS: Focal maximal electronegativity areas were frequently observed in drug-naïve CAE patients, comprising approximately half of non-generalized discharges. Focal discharges might be misleading in diagnosis. Focal areas within the brain may be responsible for and contribute to absence seizures that appear bilaterally symmetrical and generalized clinically. Although its clinical implication is unknown, this warrants further study.


Subject(s)
Electroencephalography , Epilepsy, Absence , Humans , Epilepsy, Absence/physiopathology , Epilepsy, Absence/diagnosis , Electroencephalography/methods , Child , Male , Female , Retrospective Studies , Child, Preschool , Adolescent , Brain/physiopathology , Machine Learning
14.
Genes Brain Behav ; 23(2): e12879, 2024 04.
Article in English | MEDLINE | ID: mdl-38444174

ABSTRACT

Absence seizures are characterized by brief lapses in awareness accompanied by a hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are common to genetic generalized epilepsies (GGEs). While numerous genes have been associated with increased risk, including some Mendelian forms with a single causal allele, most cases of GGE are idiopathic and there are many unknown genetic modifiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three SWD-causing mutations (Gabrg2tm1Spet(R43Q) , Scn8a8j or Gria4spkw1 ), demonstrated an antagonistic epistatic interaction between loci on mouse chromosomes 2 and 7 influencing SWD. These results implicate universal modifiers in the B6 background that mitigate SWD severity through a common pathway, independent of the causal mutation. In this study, we prioritized candidate modifiers in these interacting loci. Our approach integrated human genome-wide association results with gene interaction networks and mouse brain gene expression to prioritize candidate genes and pathways driving variation in SWD outcomes. We considered candidate genes that are functionally associated with human GGE risk genes and genes with evidence for coding or non-coding allele effects between the B6 and C3H backgrounds. Our analyses output a summary ranking of gene pairs, one gene from each locus, as candidates for explaining the epistatic interaction. Our top-ranking gene pairs implicate microtubule function, cytoskeletal stability and cell cycle regulation as novel hypotheses about the source of SWD variation across strain backgrounds, which could clarify underlying mechanisms driving differences in GGE severity in humans.


Subject(s)
Genome-Wide Association Study , Patient Discharge , Humans , Animals , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Alleles , NAV1.6 Voltage-Gated Sodium Channel
15.
Epilepsia ; 65(5): 1428-1438, 2024 May.
Article in English | MEDLINE | ID: mdl-38470175

ABSTRACT

OBJECTIVE: To delineate the comprehensive phenotypic spectrum of SYNGAP1-related disorder in a large patient cohort aggregated through a digital registry. METHODS: We obtained de-identified patient data from an online registry. Data were extracted from uploaded medical records. We reclassified all SYNGAP1 variants using American College of Medical Genetics criteria and included patients with pathogenic/likely pathogenic (P/LP) single nucleotide variants or microdeletions incorporating SYNGAP1. We analyzed neurodevelopmental phenotypes, including epilepsy, intellectual disability (ID), autism spectrum disorder (ASD), behavioral disorders, and gait dysfunction for all patients with respect to variant type and location within the SynGAP1 protein. RESULTS: We identified 147 patients (50% male, median age 8 years) with P/LP SYNGAP1 variants from 151 individuals with data available through the database. One hundred nine were truncating variants and 22 were missense. All patients were diagnosed with global developmental delay (GDD) and/or ID, and 123 patients (84%) were diagnosed with epilepsy. Of those with epilepsy, 73% of patients had GDD diagnosed before epilepsy was diagnosed. Other prominent features included autistic traits (n = 100, 68%), behavioral problems (n = 100, 68%), sleep problems (n = 90, 61%), anxiety (n = 35, 24%), ataxia or abnormal gait (n = 69, 47%), sensory problems (n = 32, 22%), and feeding difficulties (n = 69, 47%). Behavioral problems were more likely in those patients diagnosed with anxiety (odds ratio [OR] 3.6, p = .014) and sleep problems (OR 2.41, p = .015) but not necessarily those with autistic traits. Patients with variants in exons 1-4 were more likely to have the ability to speak in phrases vs those with variants in exons 5-19, and epilepsy occurred less frequently in patients with variants in the SH3 binding motif. SIGNIFICANCE: We demonstrate that the data obtained from a digital registry recapitulate earlier but smaller studies of SYNGAP1-related disorder and add additional genotype-phenotype relationships, validating the use of the digital registry. Access to data through digital registries broadens the possibilities for efficient data collection in rare diseases.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Phenotype , ras GTPase-Activating Proteins , Humans , Male , Female , Child , Epilepsy/genetics , ras GTPase-Activating Proteins/genetics , Child, Preschool , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/epidemiology , Registries , Intellectual Disability/genetics , Intellectual Disability/epidemiology , Adult , Young Adult , Developmental Disabilities/genetics , Infant , Cohort Studies , Autistic Disorder/genetics
16.
Brain Commun ; 6(2): fcae054, 2024.
Article in English | MEDLINE | ID: mdl-38444911

ABSTRACT

Juvenile myoclonic epilepsy is an idiopathic generalized epilepsy syndrome associated with photosensitivity in approximately 30-40% of cases. Microstates consist of a brief period of time during which the topography of the whole resting-state electroencephalography signal is characterized by a specific configuration. Previous neurophysiological and neuroimaging studies have suggested that Microstate B may represent activity within the visual network. In this case-control study, we aimed to investigate whether anatomical and functional alterations in the visual network observed in individuals with photosensitivity could lead to changes in Microstate B dynamics in photosensitive patients with juvenile myoclonic epilepsy. Resting-state electroencephalography microstate analysis was performed on 28 patients with juvenile myoclonic epilepsy. Of these, 15 patients exhibited photosensitivity, while the remaining 13 served as non-photosensitive controls. The two groups were carefully matched in terms of age, sex, seizure control and anti-seizure medications. Multivariate analysis of variance and repeated-measures analysis of variance were performed to assess significant differences in microstate metrics and syntax between the photosensitive and the non-photosensitive group. Post hoc false discovery rate adjusted unpaired t-tests were used to determine differences in specific microstate classes between the two groups. The four classical microstates (Classes A, B, C and D) accounted for 72.8% of the total electroencephalography signal variance in the photosensitive group and 75.64% in the non-photosensitive group. Multivariate analysis of variance revealed a statistically significant class-group interaction on microstate temporal metrics (P = 0.021). False discovery rate adjusted univariate analyses of variance indicated a significant class-group interaction for both mean occurrence (P = 0.002) and coverage (P = 0.03), but not for mean duration (P = 0.14). Post hoc false discovery rate adjusted unpaired t-tests showed significantly higher coverage (P = 0.02) and occurrence (P = 0.04) of Microstate B in photosensitive patients compared with non-photosensitive participants, along with an increased probability of transitioning from Microstates C (P = 0.04) and D (P = 0.02) to Microstate B. No significant differences were found concerning the other microstate classes between the two groups. Our study provides novel insights on resting-state electroencephalography microstate dynamics underlying photosensitivity in patients with juvenile myoclonic epilepsy. The increased representation of Microstate B in these patients might reflect the resting-state overactivation of the visual system underlying photosensitivity. Further research is warranted to investigate microstate dynamics in other photosensitive epilepsy syndromes.

17.
Epilepsy Res ; 202: 107339, 2024 May.
Article in English | MEDLINE | ID: mdl-38492461

ABSTRACT

Genetic factors contribute to the aetiology of epilepsy in >50% of cases, and information on the use of antiseizure medications in people with specific aetiologies will help guide treatment decisions. The PERMIT Extension study pooled data from two real-world studies (PERMIT and PROVE) to investigate the effectiveness and safety/tolerability of perampanel (PER) when used to treat people with focal and generalised epilepsy in everyday clinical practice. This post-hoc analysis of PERMIT Extension explored the use of PER when used to treat individuals presumed to have epilepsy with a genetic aetiology. Assessments included retention rate (evaluated at 3, 6 and 12 months), effectiveness (responder and seizure freedom rates; evaluated at 3, 6, 12 months and the last visit [last observation carried forward) and tolerability (adverse events [AEs]). Of the 6822 people with epilepsy included in PERMIT Extension, 1012 were presumed to have a genetic aetiology. The most common genetic aetiologies were idiopathic generalised epilepsy (IGE; 58.2%), tuberous sclerosis (1.1%), Dravet syndrome (0.8%) and genetic epilepsy with febrile seizures plus (GEFS+; 0.5%). Retention rates at 3, 6 and 12 months in the total genetic aetiology population were 89.3%, 79.7% and 65.9%, respectively. In the total genetic aetiology population, responder rates at 12 months and the last visit were 74.8% and 68.3%, respectively, and corresponding seizure freedom rates were 48.9% and 46.5%, respectively. For the specific aetiology subgroups, responder rates at 12 months and the last visit were, respectively: 90.4% and 84.4% (IGE), 100% and 57.1% (tuberous sclerosis), 100% and 71.4% (Dravet syndrome), and 33.3% and 20.0% (GEFS+). Corresponding seizure freedom rates were, respectively: 73.1% and 64.6% (IGE), 33.3% and 22.2% (tuberous sclerosis), 20.0% and 28.6% (Dravet syndrome), and 0% and 0% (GEFS+). The incidence of AEs was 46.5% for the total genetic aetiology population, 48.8% for IGE, 27.3% for tuberous sclerosis, 62.5% for Dravet syndrome, and 20% for GEFS+. Tolerability findings were consistent with PER's known safety profile. PER was effective and generally well tolerated when used in individuals with a presumed genetic epilepsy aetiology in clinical practice. PER was effective across a wide range of genetic aetiologies.


Subject(s)
Anticonvulsants , Epilepsy , Nitriles , Pyridones , Humans , Nitriles/therapeutic use , Pyridones/therapeutic use , Female , Male , Anticonvulsants/therapeutic use , Adult , Young Adult , Adolescent , Middle Aged , Epilepsy/drug therapy , Epilepsy/genetics , Child , Treatment Outcome , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/drug therapy , Tuberous Sclerosis/complications , Child, Preschool , Aged
18.
J Child Neurol ; 39(3-4): 135-137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500008

ABSTRACT

A key aspect of management of genetic generalized epilepsy involves assessing seizure control and deciding suitability for driving motor vehicles. We surveyed child neurologists and pediatric epileptologists on key questions that practitioners should ask prior to providing clearance for driving. The results showed a wide variability of practice among responders. We propose a likely appropriate process necessary to determine seizure control.


Subject(s)
Automobile Driving , Epilepsy, Generalized , Humans , Epilepsy, Generalized/genetics , Child , Neurologists , Surveys and Questionnaires
19.
Neuropharmacology ; 250: 109892, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38428481

ABSTRACT

KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten µM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 µM of gabapentin showed less than half of this effect and application of 50 µM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.


Subject(s)
Epilepsy , KCNQ2 Potassium Channel , Phenylenediamines , Humans , Gabapentin/pharmacology , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , Epilepsy/drug therapy , Epilepsy/genetics , Carbamates/pharmacology , Carbamates/therapeutic use
20.
Epilepsy Behav ; 153: 109718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428177

ABSTRACT

PURPOSE: Currently, there is a limited availability of tools to predict seizure recurrence after discontinuation of antiseizure medications (ASMs). This study aimed to establish the seizure recurrence rate following ASM cessation in adult patients with idiopathic generalized epilepsy (IGE) and to assess the predictive performance of the Lamberink and the Stevelink prediction models using real-world data. METHODS: Retrospective longitudinal study in IGE patients who underwent ASM withdrawal in a tertiary epilepsy clinic since June 2011, with the latest follow up in January 2024. The minimum follow-up period was 12 months. Clinical and demographic variables were collected, and the seizure recurrence prediction models proposed by Lamberink and Stevelink were applied and evaluated. RESULTS: Forty-seven patients (mean age 33.15 ± 8 [20-55] years; 72.35 % women) were included. During the follow-up period, seizures recurred in 25 patients (53.2 %). Median time to recurrence was 8 months [IQR 3-13.5 months], and 17 patients (68 %) relapsed within the first year. None of the relapsing patients developed drug-resistant epilepsy. The only significant risk factor associated with recurrence was a seizure-free period of less than 2 years before discontinuing medication (91.7 % vs 40 %, p =.005). The Stevelink prediction model at both 2 (p =.015) and 5 years (p =.020) achieved statistical significance, with an AUC of 0.72 (95 % CI 0.56-0.88), while the Lamberink model showed inadequate prognostic capability. CONCLUSION: In our real-world cohort, a seizure-free period of at least 2 years was the only factor significantly associated with epilepsy remission after ASM withdrawal. Larger studies are needed to accurately predict seizure recurrence in IGE patients.


Subject(s)
Epilepsy, Generalized , Epilepsy , Adult , Humans , Female , Male , Anticonvulsants/therapeutic use , Retrospective Studies , Longitudinal Studies , Seizures/drug therapy , Epilepsy, Generalized/drug therapy , Epilepsy/drug therapy , Recurrence , Immunoglobulin E/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...