Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Pharmacol Res ; 206: 107292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002867

ABSTRACT

Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.


Subject(s)
Asparagine , Neoplasms , Humans , Asparagine/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Tumor Microenvironment/drug effects , Molecular Targeted Therapy
2.
Metabolites ; 14(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057671

ABSTRACT

Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic ß-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.

3.
Eur J Med Res ; 29(1): 338, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890718

ABSTRACT

BACKGROUND: Synaptotagmin 11 (SYT11) plays a pivotal role in neuronal vesicular trafficking and exocytosis. However, no independent prognostic studies have focused on various cancers. In this study, we aimed to summarize the clinical significance and molecular landscape of SYT11 in various tumor types. METHODS: Using several available public databases, we investigated abnormal SYT11 expression in different tumor types and its potential clinical association with prognosis, methylation profiling, immune infiltration, gene enrichment analysis, and protein-protein interaction analysis, and identified common pathways. RESULTS: TCGA and Genotype-Tissue Expression (GTEx) showed that SYT11 was widely expressed across tumor and corresponding normal tissues. Survival analysis showed that SYT11 expression correlated with the prognosis of seven cancer types. Additionally, SYT11 mRNA expression was not affected by promoter methylation, but regulated by certain miRNAs and associated with cancer patient prognosis. In vitro experiments further verified a negative correlation between the expression of SYT11 and miR-19a-3p in human colorectal, lung, and renal cancer cell lines. Moreover, aberrant SYT11 expression was significantly associated with immune infiltration. Pathway enrichment analysis revealed that the biological and molecular processes of SYT11 were related to clathrin-mediated endocytosis, Rho GTPase signaling, and cell motility-related functions. CONCLUSIONS: Our results provide a clear understanding of the role of SYT11 in various cancer types and suggest that SYT11 may be of prognostic and clinical significance.


Subject(s)
MicroRNAs , Neoplasms , Synaptotagmins , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Synaptotagmins/genetics , Synaptotagmins/metabolism
4.
J Pathol Clin Res ; 10(2): e356, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38602501

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most advanced and aggressive thyroid cancer, and poorly differentiated thyroid carcinoma (PDTC) lacks anaplastic histology but has lost architectural and cytologic differentiation. Only a few studies have focused on the genetic relationship between the two advanced carcinomas and coexisting differentiated thyroid carcinomas (DTCs). In the present study, we investigated clinicopathologic features and genetic profiles in 57 ATC and PDTC samples, among which 33 cases had concomitant DTC components or DTC history. We performed immunohistochemistry for BRAF V600E, p53, and PD-L1 expression, Sanger sequencing for TERT promoter and RAS mutations, and fluorescence in situ hybridization for ALK and RET rearrangements. We found that ATCs and PDTCs shared similar gene alterations to their coexisting DTCs, and most DTCs were aggressive subtypes harboring frequent TERT promoter mutations. A significantly higher proportion of ATCs expressed p53 and PD-L1, and a lower proportion expressed PAX-8 and TTF-1, than the coexisting DTCs. Our findings provide more reliable evidence that ATCs and PDTCs are derived from DTCs.


Subject(s)
Adenocarcinoma , Ehlers-Danlos Syndrome , Proline/analogs & derivatives , Thiocarbamates , Thyroid Neoplasms , Humans , B7-H1 Antigen , In Situ Hybridization, Fluorescence , Tumor Suppressor Protein p53/genetics , Thyroid Neoplasms/genetics
5.
Int J Cancer ; 155(5): 871-882, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38686510

ABSTRACT

Comprehensive information on genetic alterations in salivary gland cancer (SGC) is limited. This study aimed to elucidate the genetic and clinical characteristics of patients with SGC using the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, a Japanese national genomic database. We analyzed data of 776 patients with SGC registered in the C-CAT database between June 1, 2019, and June 30, 2023. Adenoid cystic carcinoma was the most common histologic type, followed by salivary duct carcinoma (SDC) and adenocarcinoma not otherwise specified. Genetic data of 681 patients receiving FoundationOne® CDx were analyzed. We identified specific features of the combination of TP53 and CDKN2A alterations among the histological types. Specific LYN amplification was mainly detected in carcinoma ex pleomorphic adenoma and myoepithelial carcinoma. For SDC, the frequency of ERBB2 and BRAF alterations were higher in cases with metastatic lesions than in those with primary lesions. Although 28.6% patients were offered recommended treatment options, only 6.8% received the recommended treatments. This study highlights the differences in genetic alterations among the histological types of SGC, with comprehensive genomic profiling tests revealing lower drug accessibility. These findings could contribute to the development of personalized treatment for patients with SGC.


Subject(s)
Salivary Gland Neoplasms , Humans , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/therapy , Male , Female , Japan/epidemiology , Aged , Middle Aged , Adult , Receptor, ErbB-2/genetics , Aged, 80 and over , Genomics/methods , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Suppressor Protein p53/genetics , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Databases, Genetic , Carcinoma, Ductal/genetics , Carcinoma, Ductal/pathology , Carcinoma, Ductal/therapy , Proto-Oncogene Proteins B-raf/genetics , Young Adult , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy
6.
BMC Med Genomics ; 17(1): 69, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443946

ABSTRACT

Recent evidence has shed light on the significant role of FANCD2 in cancer initiation, development, and progression. However, a comprehensive pan-cancer analysis of FANCD2 has been lacking. In this study, we have conducted a thorough investigation into the expression profiles and prognostic significance of FANCD2, as well as its correlation with clinicopathological parameters and immune cell infiltration, using advanced bioinformatic techniques. The results demonstrate that FANCD2 is significantly upregulated in various common cancers and is associated with prognosis. Notably, higher expression levels of FANCD2 are linked to poor overall survival, as indicated by Cox regression and Kaplan-Meier analyses. Additionally, we have observed a decrease in the methylation of FANCD2 DNA in some cancers, and this decrease is inversely correlated with FANCD2 expression. Genetic alterations in FANCD2 predominantly manifest as mutations, which are associated with overall survival, disease-specific survival, disease-free survival, and progression-free survival in certain tumor types. Moreover, FANCD2 exhibits a strong correlation with infiltrating cell levels, immune checkpoint genes, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analysis further highlights the potential impact of FANCD2 on Fanconi anemia (FA) pathway and cell cycle regulation. Through this comprehensive pan-cancer analysis, we have gained a deeper understanding of the functions of FANCD2 in oncogenesis and metastasis across different types of cancer.


Subject(s)
Fanconi Anemia , Humans , Prognosis , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Cognition , Fanconi Anemia Complementation Group D2 Protein/genetics
7.
J Mol Neurosci ; 74(1): 17, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315329

ABSTRACT

Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Quality of Life , Glioma/pathology , Mutation , World Health Organization , Isocitrate Dehydrogenase/genetics
8.
Cancer Genomics Proteomics ; 21(2): 203-212, 2024.
Article in English | MEDLINE | ID: mdl-38423595

ABSTRACT

BACKGROUND/AIM: A genomic analysis based on next-generation sequencing is important for deciding cancer treatment strategies. Cancer tissue sometimes displays intratumor heterogeneity and a pathologic specimen may contain more than two tumor grades. Although tumor grades are very important for the cancer prognosis, the impact of higher tumor grade distribution in a specimen used for a genomic analysis is unknown. PATIENTS AND METHODS: We retrospectively analyzed the data of 61 clear cell carcinoma and 46 prostate cancer patients that were diagnosed between December 2018 and August 2022 using the GeneRead Human Comprehensive Cancer Panel or SureSelect PrePool custom Tier2. Genome annotation and curation were performed using the GenomeJack software. RESULTS: Tumor mutation burden (TMB) was increased in proportion to the higher tumor grade distribution in grade 2 clear cell renal cell carcinoma (ccRCC). In PC, Grade Group 3/4 specimens that included an increased distribution of Gleason pattern 4 had more frequent gene mutations. CONCLUSION: Our results suggest the importance of selecting the maximum distribution of higher tumor grade areas to obtain results on the precise gene alterations for genomics-focused treatments.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Prostatic Neoplasms , Male , Humans , Carcinoma, Renal Cell/genetics , Retrospective Studies , Prostatic Neoplasms/genetics , Mutation , Kidney Neoplasms/genetics
9.
Hum Pathol ; 145: 71-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423222

ABSTRACT

Colorectal cancer (CRC) is a heterogeneous disease that develops through stepwise accumulation of genetic alterations and progresses via several distinct pathways. However, the tumorigenesis of CRCs with BRAF non-V600E mutations remains unclear. Here, we aimed to elucidate the tumorigenesis of CRCs with BRAF non-V600E mutations, focusing on differences in mucin phenotype and genetic alterations between CRCs with non-V600E and V600E mutations. We investigated 201 patients with CRC and performed panel testing of 415 genes to identify BRAF mutations. Patients were classified into five mucin phenotypes - large-intestinal, small-intestinal, gastric, mixed, and unclassified - using immunohistochemistry for CD10, MUC2, MUC5AC, and MUC6. BRAF mutations were identified in 24 of 201 patients' samples, of which 13 (6.5%) had a V600E mutation (V600E-mutant) and 11 (5.5%) had non-V600E mutations (non-V600E-mutant). MUC5AC expression was significantly associated with V600E mutations (P = 0.040), while CD10 expression was significantly associated with non-V600E mutations (P = 0.010). The small-intestinal mucin phenotype was significantly associated with non-V600E mutations (P = 0.031), while the mixed mucin phenotype was significantly associated with V600E mutations (P = 0.027). Regarding genetic alterations, focusing on the WNT signaling pathway, APC mutation was significantly associated with non-V600E mutations (P < 0.001), while RNF43 mutation was significantly associated with V600E mutations (P = 0.020). Considering the differences in mucin phenotype and genetic alterations, different modes of tumorigenesis are assumed for CRC with BRAF V600E mutation and non-V600E mutations. These findings are important in understanding the biology and treatment strategies for BRAF-mutant CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Mutation , Phenotype , Colorectal Neoplasms/genetics
10.
Am J Cancer Res ; 14(1): 33-51, 2024.
Article in English | MEDLINE | ID: mdl-38323283

ABSTRACT

The genetic heterogeneity of non-small cell lung cancer (NSCLC) may impact clinical response and outcomes to targeted therapies. In second-line osimertinib treatment for NSCLC, real-world data on genetic biomarkers for treatment efficacy and prognosis remain incomplete. This real-world study involved 68 NSCLC patients receiving first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). All of these patients developed resistance, and 49 of them subsequently underwent second-line osimertinib treatment. A 639-gene DNA panel was employed to assess the impact of molecular alterations on treatment efficacy, clinical outcomes and resistance. The findings showed that the median progression-free survival (PFS) for second-line osimertinib therapy was 13.3 months. Genes alterations such as P21 (RAC1) activated kinase 5 (PAK5), RNA binding motif protein 10 (RBM10), and EPH receptor A3 (EPHA3) mutations were associated with significantly shorter PFS in osimertinib therapy. At multivariate analysis, they were all independent risk predictors of shorter PFS. Additionally, the median overall survival (OS) for osimertinib was 26.2 months. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), hepatocyte growth factor (HGF), and RBM10 mutations were significantly associated with poorer OS in osimertinib treatment. The multivariate analysis demonstrated that only RBM10 mutation emerged as an independent risk predictor of shorter OS. In vitro experiments showed that RBM10 mutations could promote the proliferation and migration ability of NSCLC cells and reduced cell apoptosis. The resistance mechanisms to osimertinib were heterogeneous. Histone cluster 1 H2B family member D (HIST1H2BD) acted as a novel resistance mechanism to osimertinib. Previously unreported HIST1H2BD mutations (p.K25Q and p.E36D) were detected in the NSCLC tissues. In vitro experiments confirmed that HIST1H2BD mutations led to resistance to osimertinib. In summary, we demonstrate that genetic biomarkers, such as PAK5, RBM10, and EPHA3, are independent predictors of PFS in second-line osimertinib treatment, with RBM10 emerging as an independent predictor of OS. Additionally, HIST1H2BD represents a novel resistance mutation to osimertinib. All of these findings offer valuable insights for making personalized treatment strategies for NSCLC patients.

11.
Cancer Res Treat ; 56(1): 219-237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37591783

ABSTRACT

PURPOSE: Bone metastasis (BM) adversely affects the prognosis of gastric cancer (GC). We investigated molecular features and immune microenvironment that characterize GC with BM compared to GC without BM. MATERIALS AND METHODS: Targeted DNA and whole transcriptome sequencing were performed using formalin-fixed paraffin-embedded primary tumor tissues (gastrectomy specimens) of 50 GC cases with distant metastases (14 with BM and 36 without BM). In addition, immunohistochemistry (IHC) for mucin-12 and multiplex IHC for immune cell markers were performed. RESULTS: Most GC cases with BM had a histologic type of poorly cohesive carcinoma and showed worse overall survival (OS) than GC without BM (p < 0.05). GC with BM tended to have higher mutation rates in TP53, KDR, APC, KDM5A, and RHOA than GC without BM. Chief cell-enriched genes (PGA3, PGC, and LIPF), MUC12, MFSD4A, TSPAN7, and TRIM50 were upregulated in GC with BM compared to GC without BM, which was correlated with poor OS (p < 0.05). However, the expression of SERPINA6, SLC30A2, PMAIP1, and ITIH2 were downregulated in GC with BM. GC with BM was associated with PIK3/AKT/mTOR pathway activation, whereas GC without BM showed the opposite effect. The densities of helper, cytotoxic, and regulatory T cells did not differ between the two groups, whereas the densities of macrophages were lower in GC with BM (p < 0.05). CONCLUSION: GC with BM had different gene mutation and expression profiles than GC without BM, and had more genetic alterations associated with a poor prognosis.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Gene Expression Profiling , Prognosis , Transcriptome , Genomics , Tumor Microenvironment , Retinoblastoma-Binding Protein 2/genetics
12.
J Cell Mol Med ; 28(3): e18088, 2024 02.
Article in English | MEDLINE | ID: mdl-38146591

ABSTRACT

Lysosomal dysfunction can drive carcinogenesis. Lysosomal-associated membrane protein 3 (LAMP3), is a member of the Lysosome Associated Membrane Proteins and is involved in the malignant phenotype such as tumour metastasis and drug resistance, while the mechanisms that regulate the malignant progression of tumour remain vague. Our study aims to provide a more systematic and comprehensive understanding of the role of LAMP3 in the progression of various cancers by various databases.We explored the role of LAMP3 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple online web platforms and software were used for data analysis, including HPA, TIMER, TISIDB, GEPIA, UALCAN, Kaplan-Meier plotter, DAVID and TIGER. The immunohistochemistry was used to quantify the LAMP3 and PD-L1 expression levels in cancer.High LAMP3 expression was found in most cancers and differentially expressed across molecular and immune subtypes. The expression of LAMP3 was involved in the immune-associated processes of Antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and the immune-associated pathways of T cell receptor and B cell receptor signalling pathways in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. LAMP3 and PD-L1 expression in BRCA and HNSC tissues was higher than that in corresponding adjacent normal tissues by immunohistochemistry. There is a significant correlation between the expression of LAMP3 and PD-L1.Our study elucidates that LAMP3 has different expression patterns and genetic alteration patterns in different tumours. It is a potential biomarker for immune-related cancer diagnosis, prognosis and efficacy prediction.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Lysosomal-Associated Membrane Protein 3 , Prognosis , Lysosomal Membrane Proteins
13.
World J Clin Cases ; 11(33): 8058-8064, 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38075582

ABSTRACT

BACKGROUND: Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of extranodal lymphoma. In particular, the Asian variant of IVLBCL is characterized by hemophagocytic lymphohistiocytosis along with bone marrow involvement. However, central nervous system (CNS) involvement is uncommon in this variant compared to the Western variant. Here, we report a case of typical Asian variant IVLBCL with highly suspected CNS involvement and discuss the nature of the disease and its genetic aberration. CASE SUMMARY: A 67-year-old female patient complained of gradually worsening cognitive impairment. While hospitalized, she developed a high fever and showed marked bicytopenia. Intracranial imaging revealed a suspected leptomeningeal disease. Although no malignant cells were found in the cerebrospinal fluid (CSF), the protein and lactate dehydrogenase levels in CSF were increased. Bone marrow examination revealed an increased number of hemophagocytic histiocytes, and 18F-fluorodeoxyglucose (FDG) positron emission tomography with computerized tomography scan revealed increased FDG uptake in both adrenal glands, the liver, and the right ethmoid sinus. A tissue biopsy showed atypical large lymphoid cells with prominent nucleoli in the vessels, and the tumor cells were positive for CD20, BCL2, BCL6, and IRF4/MUM1. In addition, targeted sequencing identified MYD88, TET2, and PIM1 mutations. Consequently, we diagnosed the patient with the Asian variant of IVLBCL with highly suspected CNS involvement. CONCLUSION: Suspicion of IVLBCL and immediate diagnosis lead to timely treatment. Moreover, careful CNS examination at diagnosis is recommended.

14.
Clin Exp Med ; 23(8): 4289-4296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910258

ABSTRACT

Cancer immunotherapy, particularly immune checkpoint inhibitors, has opened a new avenue for cancer treatment following the durable clinical benefits. Despite the clinical successes across several cancer types, primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Hence, to broaden the clinical applicability of these treatments, a detailed understanding of the mechanisms limiting the efficacy of cancer immunotherapy is needed. Evidence provided thus far has implicated immunosuppressive innate immune cells infiltrating the tumor microenvironment as key players in immunotherapy resistance. According to the available data, genetic alterations can shape the innate immune response to promote immunotherapy resistance and tumor progression. Herein, this review has discussed the current understanding of the underlying mechanisms where genetic alterations modulate the innate immune milieu to drive immunosuppression and immunotherapy resistance.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immunosuppression Therapy , Neoplasms/therapy , Neoplasms/drug therapy , Immunity, Innate , Tumor Microenvironment
15.
Semin Cancer Biol ; 97: 12-20, 2023 12.
Article in English | MEDLINE | ID: mdl-37926347

ABSTRACT

Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/complications , Carcinoma, Pancreatic Ductal/therapy , Obesity/complications , Obesity/metabolism , Inflammation/complications , Carcinogenesis , Tumor Microenvironment
16.
Open Med (Wars) ; 18(1): 20230792, 2023.
Article in English | MEDLINE | ID: mdl-37724127

ABSTRACT

Combined cancer immunotherapy and targeted therapy have proven to be effective against various cancers and therefore have recently become the focus of cancer research. Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT protein family of transcription factors. Several studies have shown that STAT3 can affect the prognosis of cancer patients by regulating immune microenvironment (IME). Therefore, STAT3 may have high research value for the development of combined immunotherapy/targeted therapy approaches for the treatment of cancer patients. We found differences in STAT3 expression between tumor and normal tissues. Kaplan-Meier survival and Cox regression analyses showed that high expression of STAT3 is associated with poor prognosis in low-grade glioma (LGG) patients. The results of the analysis of the area under the curve of the receiver operating characteristic curve further suggested that the expression of STAT3 is an effective way to evaluate the prognosis of patients with glioma. The results of the IME analysis revealed that the immune and matrix scores of LGGs were positively correlated with the expression of STAT3 (P < 0.05). The results of immune cell infiltration analysis showed that STAT3 was positively correlated with resting dendritic cells, eosinophils, neutrophils, M0 macrophages, M1 macrophages, CD4 memory resting T cells, and CD8 T cells in LGG patients, but negatively correlated with activated mast cells and M2 macrophages (P < 0.05). Our gene set enrichment analysis identified 384 enriched pathways. According to the enrichment scores, the top ten most significantly upregulated pathways were related to immune response. The top ten most significantly downregulated pathways were related to cell signal transduction and the regulation of cell survival, proliferation, and metabolism. Genetic alteration analysis showed that missense mutations in STAT3 account for the majority of mutations, and STAT3 mutations mostly occur in the Src homology domain. In conclusion overexpression of STAT3 can promote the development and growth of tumors by regulating IME, which is significantly related to the poor prognosis of cancer patients. Therefore, targeted inhibition of STAT3 expression may have high research value for the development of combined immunotherapy/targeted therapy approaches for the treatment of cancer patients.

17.
Cancers (Basel) ; 15(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760521

ABSTRACT

Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.

18.
Biomedicines ; 11(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37626750

ABSTRACT

Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.

19.
Aging (Albany NY) ; 15(12): 5798-5825, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37367937

ABSTRACT

BACKGROUND: TRIM family molecules have been identified as being involved in the tumor progression of various cancer types. Increasingly, experimental evidence indicates that some of TRIM family molecules are implicated in glioma tumorigenesis. However, the diverse genomic changes, prognostic values and immunological landscapes of TRIM family of molecules have yet to be fully determined in glioma. METHODS: In our study, employing the comprehensive bioinformatics tools, we evaluated the unique functions of 8 TRIM members including TRIM5/17/21/22/24/28/34/47 in gliomas. RESULTS: The expression levels of 7 TRIM members (TRIM5/21/22/24/28/34/47) were higher in glioma as well as its diverse cancer subtypes than in normal tissues, whereas the expression level of TRIM17 was the opposite, lower in the former than in the latter. In addition, survival analysis revealed that the high expression profiles of TRIM5/21/22/24/28/34/47 were associated with poor overall survival (OS), disease-specific survival (DSS) and progress-free interval (PFI) in glioma patients, whereas TRIM17 displayed adverse outcomes. Moreover, the 8 TRIM molecules expression as well as methylation profiles remarkably correlated with different WHO grades. And genetic alterations, including mutations and copy number alterations (CNAs), in the TRIM family were correlated with longer OS, DSS and progress-free survival (PFS) in glioma patients. Furthermore, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of these 8 molecules and their related genes, we found that these molecules may change the immune infiltration of the tumor microenvironment and regulate the expression of immune checkpoint molecules (ICMs), affecting the occurrence and development of gliomas. The correlation analyses between the 8 TRIM molecules and TMB (tumor mutational burden)/MSI (microsatellite instability)/ICMs discovered that as the expression level of TRIM5/21/22/24/28/34/47 increased, the TMB score also increased significantly, while TRIM17 showed an opposite outcome. Further, a 6-gene signature (TRIM 5/17/21/28/34/47) for predicting overall survival (OS) in gliomas was built by using the least absolute shrinkage and selection operator (LASSO) regression, and the survival and time-dependent ROC analyses all were found to perform well in testing and validation cohorts. Results of multivariate COX regression analysis showed that TRIM5/28 are both expected to become independent risk predictors to guide clinical treatment. CONCLUSION: In general, the results indicate that TRIM5/17/21/22/24/28/34/47 might exert a crucial influence on gliomas tumorigenesis and might be putative prognostic markers and therapeutic targets for glioma patients.


Subject(s)
Glioma , Humans , Prognosis , Glioma/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Computational Biology , Immune Checkpoint Proteins , Microsatellite Instability , Tumor Microenvironment , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
20.
Glob Med Genet ; 10(2): 123-128, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37360004

ABSTRACT

Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."

SELECTION OF CITATIONS
SEARCH DETAIL
...