Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Int J Cancer ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958227

ABSTRACT

In patients with non-small cell lung cancer (NSCLC), oncogenic variants present in <5% of cases are considered rare, the predominant of which include human epidermal growth factor receptor 2 (HER2) mutations, mesenchymal-epithelial transition (MET) alterations, c-ros oncogene 1 (ROS1) rearrangements, rearrangement during transfection (RET) fusions, v-raf mouse sarcoma virus oncogene homolog B1 (BRAF) mutations, and neurotrophic troponin receptor kinase (NTRK) fusions. Brain metastases (BMs) occur in approximately 10%-50% of patients with NSCLC harboring rare genetic variants. The recent advent of small-molecule tyrosine kinase inhibitors and macromolecular antibody-drug conjugates (ADCs) has conferred marked survival benefits to patients with NSCLC harboring rare driver alterations. Despite effective brain lesion control for most targeted agents and promising reports of intracranial remission associated with novel ADCs, BM continues to be a major therapeutic challenge. This review discusses the recent advances in the treatment of NSCLC with rare genetic variants and BM, with a particular focus on intracranial efficacy, and explores future perspectives on how best to treat these patients.

2.
Chin J Cancer Res ; 36(3): 282-297, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988485

ABSTRACT

Objective: The clinical significance of homologous recombination deficiency (HRD) in breast cancer, ovarian cancer, and prostate cancer has been established, but the value of HRD in non-small cell lung cancer (NSCLC) has not been fully investigated. This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care. Methods: A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled. HRD status was assessed using the AmoyDx Genomic Scar Score (GSS), with a score of ≥50 considered HRD-positive. Genomic, transcriptomic, tumor microenvironmental characteristics and prognosis between HRD-positive and HRD-negative patients were analyzed. Results: Of the patients, 25.1% (89/355) were HRD-positive. Compared to HRD-negative patients, HRD-positive patients had more somatic pathogenic homologous recombination repair (HRR) mutations, higher tumor mutation burden (TMB) (P<0.001), and fewer driver gene mutations (P<0.001). Furthermore, HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes, MET and MYC in epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) mutant NSCLC, and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC. HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity. HRD-negative NSCLC showed activated signatures of major histocompatibility complex (MHC)-II, interferon (IFN)-γ and effector memory CD8+ T cells. HRD-positive patients had a worse prognosis and shorter progression-free survival (PFS) to targeted therapy (first- and third-generation EGFR-TKIs) (P=0.042). Additionally, HRD-positive, EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens. Conclusions: Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC. Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC. This study highlights potential actionable alterations in HRD-positive NSCLC, suggesting possible combinational therapeutic strategies for these patients.

3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000035

ABSTRACT

Alternative splicing dysregulation is an emerging cancer hallmark, potentially serving as a source of novel diagnostic, prognostic, or therapeutic tools. Inhibitors of the activity of the splicing machinery can exert antitumoral effects in cancer cells. We aimed to characterize the splicing machinery (SM) components in oral squamous cell carcinoma (OSCC) and to evaluate the direct impact of the inhibition of SM-activity on OSCC-cells. The expression of 59 SM-components was assessed using a prospective case-control study of tumor and healthy samples from 37 OSCC patients, and the relationship with clinical and histopathological features was assessed. The direct effect of pladienolide-B (SM-inhibitor) on the proliferation rate of primary OSCC cell cultures was evaluated. A significant dysregulation in several SM components was found in OSCC vs. adjacent-healthy tissues [i.e., 12 out of 59 (20%)], and their expression was associated with clinical and histopathological features of less aggressiveness and overall survival. Pladienolide-B treatment significantly decreased OSCC-cell proliferation. Our data reveal a significantly altered expression of several SM-components and link it to pathophysiological features, reinforcing a potential clinical and pathophysiological relevance of the SM dysregulation in OSCC. The inhibition of SM-activity might be a therapeutic avenue in OSCC, offering a clinically relevant opportunity to be explored.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Male , Female , Middle Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Aged , Gene Expression Regulation, Neoplastic , Macrolides/pharmacology , Alternative Splicing , Epoxy Compounds/pharmacology , Case-Control Studies , Cell Line, Tumor , RNA Splicing , Adult , Prospective Studies
4.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891057

ABSTRACT

The identification of anticancer therapies using next-generation sequencing (NGS) is necessary for the treatment of cholangiocarcinoma. NGS can be easily performed when cell blocks (CB) are obtained from bile stored overnight. We compared NGS results of paired CB and surgically resected specimens (SRS) from the same cholangiocarcinoma cases. Of the prospectively collected 64 bile CBs from 2018 to 2023, NGS was performed for three cases of cholangiocarcinoma that could be compared with the SRS results. The median numbers of DNA and RNA reads were 95,077,806 [CB] vs. 93,161,788 [SRS] and 22,101,328 [CB] vs. 24,806,180 [SRS], respectively. We evaluated 588 genes and found that almost all genetic alterations were attributed to single-nucleotide variants, insertions/deletions, and multi-nucleotide variants. The coverage rate of variants in SRS by those found in CB was 97.9-99.2%, and the coverage rate of SRS genes by CB genes was 99.6-99.7%. The NGS results of CB fully covered the variants and genetic alterations observed in paired SRS samples. As bile CB is easy to prepare in general hospitals, our results suggest the potential use of bile CB as a novel method for NGS-based evaluation of cholangiocarcinoma.


Subject(s)
Bile , Cholangiocarcinoma , High-Throughput Nucleotide Sequencing , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , High-Throughput Nucleotide Sequencing/methods , Bile/metabolism , Male , Middle Aged , Female , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Aged , Mutation/genetics
5.
Article in English | MEDLINE | ID: mdl-38902476

ABSTRACT

Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.

6.
BMC Cancer ; 24(1): 673, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825709

ABSTRACT

Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mutation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Male , Female , Prognosis , Middle Aged , Aged , Adult , Biomarkers, Tumor/genetics , Genomics/methods , BRCA2 Protein/genetics , Molecular Targeted Therapy , Hepatectomy , Gene Expression Profiling , Tumor Suppressor Protein p53/genetics , DNA-Binding Proteins , Neoplasm Proteins , beta Catenin
7.
Cell Biochem Funct ; 42(4): e4075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924101

ABSTRACT

The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.


Subject(s)
Gastrointestinal Neoplasms , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/chemistry , Humans , Tumor Suppressor Protein p53/metabolism , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Animals
8.
Cesk Patol ; 60(1): 35-48, 2024.
Article in English | MEDLINE | ID: mdl-38697826

ABSTRACT

Spitz tumors represent a heterogeneous group of challenging melanocytic neoplasms, displaying a range of biological behaviors, spanning from benign lesions, Spitz nevi (SN) to Spitz melanomas (SM), with intermediate lesions in between known as atypical Spitz tumors (AST). They are histologically characterized by large epithelioid and/or spindled melanocytes arranged in fascicles or nests, often associated with characteristic epidermal hyperplasia and fibrovascular stromal changes. In the last decade, the detection of mutually exclusive structural rearrangements involving receptor tyrosine kinases ROS1, ALK, NTRK1, NTRK2, NTRK3, RET, MET, serine threonine kinases BRAF and MAP3K8, or HRAS mutation, led to a clinical, morphological and molecular based classification of Spitz tumors. The recognition of some reproducible histological features can help dermatopathologist in assessing these lesions and can provide clues to predict the underlying molecular driver. In this review, we will focus on clinical and morphological findings in molecular Spitz tumor subgroups.


Subject(s)
Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Nevus, Epithelioid and Spindle Cell/pathology , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/diagnosis , Melanoma/pathology , Melanoma/genetics , Melanoma/diagnosis
9.
Pathol Res Pract ; 258: 155355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763089

ABSTRACT

Thyroid carcinomas are the most common endocrine malignancy and commonly have alterations in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathways in well-differentiated tumors. Alternative molecular alterations driving thyroid carcinomas have been identified rarely in the literature and are more likely to occur in poorly differentiated or anaplastic cases. In this study, uncommon genetic alterations such as MLH1, MSH2, NSD3::NUTM1, RET::SPECC1L, and G3BP2::FGFR2 were identified in patients with papillary thyroid carcinoma, poorly differentiated thyroid carcinoma, and differentiated high-grade thyroid carcinoma. Most of these tumors demonstrated an aggressive biological behavior. Atypical driver mutations in thyroid carcinomas can occur in patients with cancer predisposition syndromes as demonstrated by an NTRK1::TPM3 fusion in a patient with Li Fraumeni syndrome. In these settings of more aggressive disease, molecular testing targeting actionable fusions and mutations is important. As demonstrated in our case cohort, 100% of cases diagnosed as high-grade follicular-derived thyroid carcinoma had a mutation or fusion that is associated with worse prognosis, has a germline syndrome association requiring further work up, or an actionable mutation. This high yield seen in this cohort for molecular testing in patients with high-grade follicular-derived thyroid carcinoma suggests more routine molecular testing in this population would be a beneficial clinical practice.


Subject(s)
Adenocarcinoma, Follicular , Mutation , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Male , Female , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/pathology , Middle Aged , Adult , Aged , Biomarkers, Tumor/genetics , Young Adult
10.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189106, 2024 May.
Article in English | MEDLINE | ID: mdl-38701936

ABSTRACT

Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.


Subject(s)
Biomarkers, Tumor , Molecular Targeted Therapy , Precision Medicine , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Molecular Targeted Therapy/methods
11.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790167

ABSTRACT

Colorectal cancer (CRC) accounts for about 10% of all cancer cases and 9% of cancer-related deaths globally. In the United States alone, CRC represents approximately 12.6% of all cancer cases, with a mortality rate of about 8%. CRC is now the first leading cause of cancer death in men younger than age 50 and second in women younger than age 50. This review delves into the genetic landscape of CRC, highlighting key mutations and their implications in disease progression and treatment. We provide an overview of the current and emerging therapeutic strategies tailored to individual genomic profiles.


Subject(s)
Colorectal Neoplasms , Precision Medicine , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Precision Medicine/methods , Mutation , Molecular Targeted Therapy , Female , Male
12.
Cesk Patol ; 60(1): 12-34, 2024.
Article in English | MEDLINE | ID: mdl-38697825

ABSTRACT

Melanocytic lesions are instable tumors, the genome of which and its changes determinate their morphology and biological properties. Intermediate lesions share histomorphological features of both, nevi and melanoma. Melanocytomas represent a group of them separated on the basis of recent molecular-biological studies. The article summarizes benign, intermediate, malignant and combined melanocytic skin lesions and offers practical recommendations for diagnosis.


Subject(s)
Melanoma , Nevus, Pigmented , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Melanoma/pathology , Melanoma/diagnosis , Nevus, Pigmented/pathology , Nevus, Pigmented/diagnosis
13.
Lung Cancer ; 192: 107825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795461

ABSTRACT

Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm with biological heterogeneity. Mutations in multiple genes have been identified in LCNEC. However, associations between gene alterations, histopathological characteristics, and prognosis remain ambiguous. Here, we investigated the clinicopathologic, immunohistochemical, and genomic characteristics of 19 patients with LCNEC and 9 patients with atypical carcinoid (AC). We revealed high mutation frequencies of TP53 (89.5 %), RB1 (42.1 %), APC (31.6 %), and MCL1 (31.6 %) in LCNEC, while genetic alterations were rarely found in AC. APC alterations mainly occurred to the exon 16 and were only identified in LCNEC with wild-type RB1. The 19 LCNEC were further subgrouped into APC wild-type (LCNEC-APCMT, 6/19) and APC-mutated (LCNEC-APCWT, 13/19) subgroups. In comparison with LCNEC-APCWT, LCNEC-APCMT displayed lower TMB (median: 12.64 vs 4.20, P = 0.045), and relatively mild cytologic atypia. In addition, LCNEC-APCMT distinguished itself from AC and LCNEC-APCWT by obviously downregulated expression of neuroendocrine markers (CD56 and Syn, P < 0.01) and significantly altered expression of genes downstream of APC (ß-catenin migrating into the cytoplasm and nucleus, P < 0.001; c-Myc upregulating, P = 0.005). The OS of LCNEC-APCMT was numerically intermediate between AC and LCNEC-APCWT. We first proposed that APC alterations were common in LCNEC with wild-type RB1 and that LCNEC-APCMT was associated with lower TMB and better OS in comparison with LCNEC-APCWT.


Subject(s)
Carcinoma, Large Cell , Carcinoma, Neuroendocrine , Lung Neoplasms , Mutation , Humans , Male , Female , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Middle Aged , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/diagnosis , Aged , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , DNA Mutational Analysis , Adult , Biomarkers, Tumor/genetics , Adenomatous Polyposis Coli Protein/genetics , Aged, 80 and over
14.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38675409

ABSTRACT

The discovery and subsequent research on the MET oncogene's role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the MET tyrosine kinase activation mechanism and its downstream signaling cascade. Over the past thirty years, research has established the importance of HGF/MET signaling in normal cellular processes, such as cell dissociation, migration, proliferation, and cell survival. Notably, genetic alterations that lead to the continuous activation of MET, known as constitutive activation, have been identified as oncogenic drivers in various cancers. The genetic lesions affecting MET, such as exon skipping, gene amplification, and gene rearrangements, provide valuable targets for therapeutic intervention. Moreover, the implications of MET as a resistance mechanism to targeted therapies emphasize the need for combination treatments that include MET inhibitors. The intriguing "flare effect" phenomenon, wherein MET inhibition can lead to post-treatment increases in cancer cell proliferation, underscores the dynamic nature of cancer therapeutics. In human tumors, increased protein expression often occurs without gene amplification. Various mechanisms may cause an overexpression: transcriptional upregulation induced by other oncogenes; environmental factors (such as hypoxia or radiation); or substances produced by the reactive stroma, such as inflammatory cytokines, pro-angiogenic factors, and even HGF itself. In conclusion, the journey to understanding MET's involvement in cancer onset and progression over the past three decades has not only deepened our knowledge, but has also paved the way for innovative therapeutic strategies. Selective pharmacological inactivation of MET stands as a promising avenue for achieving cancer remission, particularly in cases where MET alterations are the primary drivers of malignancy.

15.
Cancers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672664

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.

16.
Curr Issues Mol Biol ; 46(4): 3193-3208, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38666930

ABSTRACT

Neuroblastoma is the most common solid extracranial tumor during childhood; it displays extraordinary heterogeneous clinical courses, from spontaneous regression to poor outcome in high-risk patients due to aggressive growth, metastasizing, and treatment resistance. Therefore, the identification and detailed analysis of promising tumorigenic molecular mechanisms are inevitable. This review highlights the abnormal regulation of NF-κB, Nrf2, and Phox2B as well as their interactions among each other in neuroblastoma. NF-κB and Nrf2 play a key role in antioxidant responses, anti-inflammatory regulation and tumor chemoresistance. Recent studies revealed a regulation of NF-κB by means of the Nrf2/antioxidant response element (ARE) system. On the other hand, Phox2B contributes to the differentiation of immature sympathetic nervous system stem cells: this transcription factor regulates the expression of RET, thereby facilitating cell survival and proliferation. As observed in other tumors, we presume striking interactions between NF-κB, Nrf2, and Phox2B, which might constitute an important crosstalk triangle, whose decompensation may trigger a more aggressive phenotype. Consequently, these transcription factors could be a promising target for novel therapeutic approaches and hence, further investigation on their regulation in neuroblastoma shall be reinforced.

17.
Cancers (Basel) ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38539499

ABSTRACT

In this study, we aimed to identify patients within our B-ALL cohort with altered PAX5. Our objective was to use a comprehensive analysis approach to characterize the types of genetic changes, determine their origin (somatic/germline), and analyze the clinical outcomes associated with them. A consecutive cohort of 99 patients with B-ALL treated at the Children's Hospital of the UMC Ljubljana according to the ALL IC-BFM 2009 protocol was included in our study. We used RNA sequencing data for gene expression analysis, fusion gene detection and single nucleotide variant identification, multiplex-ligation dependent probe amplification for copy number variation assessment, and Sanger sequencing for germline variant detection. PAX5 was impacted in 33.3% of our patients, with the genetic alterations ranging from CNVs and rearrangements to SNVs. The most common were CNVs, which were found in more than a third of patients, followed by point mutations in 5.2%, and gene rearrangements in 4.1%. We identified eight patients with a PAX5-associated genetic subtype that were previously classified as "B-other", and they showed intermediate outcomes. We showed higher minimal residual disease values at the end of induction and poorer event-free survival in hyperdiploid cases carrying duplications in PAX5 compared to other hyperdiploid cases. We also report an interesting case of a patient with PAX5::FKBP15 and a pathogenic variant in PTPN11 who underwent an early relapse with a monocytic switch. In conclusion, this study provides valuable insights into the presence, frequency, and prognostic significance of diverse PAX5 alterations in B-ALL patients, highlighting the complexity of genetic factors and their impact on patient outcomes.

18.
Cancers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38539567

ABSTRACT

BACKGROUND: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of this review article was to investigate proteogenomic approaches in lung cancer, focusing on how elucidation of proteogenomic features can evoke tangible clinical outcomes. METHODS: A strict methodological approach was adopted for study selection and key article features included molecular attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. RESULTS: As a consensus, in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient driver mutations, and exploration of downstream effects uncovers great variability in transcript and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of major histological classes, generating a diverse portrait of predictive markers and druggable targets. CONCLUSIONS: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein provided, underpinning the importance of proteogenomics in the landscape of personalized medicine for combating lung cancer.

19.
J Gastrointest Cancer ; 55(2): 900-912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427147

ABSTRACT

BACKGROUND: Gastric cancer is one of the major public health problems worldwide. Circadian rhythm disturbances driven by circadian clock genes play a role in the development of cancer. However, whether circadian clock genes can serve as potential therapeutic targets and prognostic biomarkers for gastric cancer remains elusive. METHODS: In this study, we comprehensively analyzed the potential relationship between circadian clock genes and gastric cancer using online bioinformatics databases such as GEPIA, cBioPortal, STRING, GeneMANIA, Metascape, TIMER, TRRUST, and GEDS. RESULTS: Biological clock genes are expressed differently in human tumors. Compared with normal tissues, only PER1, CLOCK, and TIMELESS expression differences were statistically significant in gastric cancer (p < 0.05). PER1 (p = 0.0169) and CLOCK (p = 0.0414) were associated with gastric cancer pathological stage (p < 0.05). Gastric cancer patients with high expression of PER1 (p = 0.0028) and NR1D1 (p = 0.016) had longer overall survival, while those with high expression of PER1 (p = 0.042) and NR1D1 (p = 0.016) had longer disease-free survival. The main function of the biological clock gene is related to the circadian rhythms and melatonin metabolism and effects. CLOCK, NPAS2, and KAT2B were key transcription factors for circadian clock genes. In addition, we also found important correlations between circadian clock genes and various immune cells in the gastric cancer microenvironment. CONCLUSIONS: This study may establish a new gastric cancer prognostic indicator based on the biological clock gene and develop new drugs for the treatment of gastric cancer using biological clock gene targets.


Subject(s)
Biomarkers, Tumor , CLOCK Proteins , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , CLOCK Proteins/genetics , Circadian Clocks/genetics , Period Circadian Proteins/genetics , Gene Expression Regulation, Neoplastic , Computational Biology , Circadian Rhythm/genetics , Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , Nuclear Receptor Subfamily 1, Group D, Member 1
20.
Virchows Arch ; 484(6): 915-923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532197

ABSTRACT

Genetic alterations including fusions in fibroblast growth factor receptor 2 (FGFR2) are detected in 10-20% of intrahepatic cholangiocarcinoma (iCCA), and FGFR2 inhibitors are effective for the treatment of iCCA. We examined a prevalence of FGFR2 genetic alterations and their clinicopathological significance in combined hepatocellular-cholangiocarcinoma (cHCC-CCA). FGFR2 expression, which is a surrogate marker for FGFR2 genetic alterations, was immunohistochemically assessed in the liver sections from 75 patients with cHCC-CCA, 35 with small duct-type iCCA, 30 with large duct-type iCCA, and 35 with hepatocellular carcinoma (HCC). FGFR2 genetic alterations were detected by reverse transcription-PCR and direct sequence. An association of FGFR2 expression with clinicopathological features was investigated in cHCC-CCAs. FGFR2 expression was detected in significantly more patients with cHCC-CCA (21.3%) and small duct-type iCCA (25.7%), compared to those with large duct-type iCCA (3.3%) and HCC (0%) (p < 0.05). FGFR2-positive cHCC-CCAs were significantly smaller size (p < 0.05), with more predominant cholangiolocarcinoma component (p < 0.01) and less nestin expression (p < 0.05). Genetic alterations of ARID1A and BAP1 and multiple genes were significantly more frequent in FGFR2-positive cHCC-CCAs (p < 0.05). 5'/3' imbalance in FGFR2 genes indicating exon18-truncated FGFR2 was significantly more frequently detected in FGFR2-positive cHCC-CCAs and small duct iCCAs, compared to FGFR2-negative ones (p < 0.05). FGFR2::BICC fusion was detected in a case of cHCC-CCAs. FGFR2 genetic alterations may be prevalent in cHCC-CCAs as well as small duct-type iCCAs, which suggest cHCC-CCAs may also be a possible therapeutic target of FGFR2 inhibitors.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Female , Male , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Middle Aged , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Aged , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Aged, 80 and over , Immunohistochemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase
SELECTION OF CITATIONS
SEARCH DETAIL
...