Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.772
Filter
1.
Article in English | MEDLINE | ID: mdl-38895866

ABSTRACT

BACKGROUND: The head louse, Pediculus humanus capitis, is an obligate ectoparasite and its infestation remains a major public health issue worldwide. Determining the genetic characteristics of the existing clades is essential to identify the population structure and to develop head lice-control programs. Hence, we aimed to investigate the genetic diversity of head lice among infested individuals in northern Iran. METHODS: Adult head lice were collected from 100 infested individuals referring to the health centers throughout five geographical regions in Mazandaran Province, Iran. Partial fragments of the mitochondrial cytb gene were amplified by PCR, then consequently sequenced. RESULTS: The results of the phylogenetic tree of collected head lice confirmed the existence of two clades, A and B, in the studied areas. Thirteen haplotypes were detected in the studied populations, of which 11 were novel haplotypes. Clade A was the dominant form and accounted for 75% of samples, while clade B included the rest. Haplotype and nucleotide diversity were 0.999 and 0.0411, respectively. CONCLUSIONS: Clade A and B of Pediculus humanus capitis exist among the human populations of northern Iran. We observed high genotypic diversity of this head lice.

2.
Plant Sci ; : 112155, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885883

ABSTRACT

Domestication syndrome, selection pressure, and modern plant breeding programs have reduced the genetic diversity of the wheat germplasm. For the genetic gains of breeding programs to be sustainable, plant breeders require a diverse gene pool to select genes for resistance to biotic stress factors, tolerance to abiotic stress factors, and improved quality and yield components. Thus, old landraces, subspecies and wild ancestors are rich sources of genetic diversity that have not yet been fully exploited, and it is possible to utilize this diversity. Compared with durum wheat, tetraploid wheat subspecies have retained much greater genetic diversity despite genetic drift and various environmental influences, and the identification and utilization of this diversity can make a greater contribution to the genetic enrichment of wheat. In addition, using the pre-breeding method, the valuable left-behind alleles in the wheat gene pool can be re-introduced through hybridization and introgressive gene flow to create a sustainable opportunity for the genetic gain of wheat. This review provides some insights about the potential of tetraploid wheats in plant breeding and the genetic gains made by them in plant breeding across past decades, and gathers the known functional information on genes/QTLs, metabolites, traits and their direct involvement in wheat resistance/tolerance to biotic/abiotic stresses.

3.
Cureus ; 16(4): e58542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38887511

ABSTRACT

The Y chromosome has gained significant importance in the examination of genetic studies of populations because of its non-recombinant character and its form of uniparental inheritance. This work seeks to offer a comprehensive review of the specialty literature in the field of population genetics, focusing specifically on the analysis of the human Y chromosome using a bibliometric approach and knowledge mapping. This involves establishing worldwide structural networks by identifying the primary research themes, authors, and papers that have had a significant impact on the academic community. The objective is to examine global publications by analyzing citations at both the document and country level. This will involve conducting co-citation analysis for references with a high number of citations, examining bibliographic coupling through journal analysis, analyzing the co-occurrence of keywords, and investigating collaboration between authors from a country perspective. The research papers have been extracted from the Web of Science database. The bibliometric analysis was performed using the Bibliometrix and VOSviewer software tools. The purpose of this article is to serve as a starting point for future research dedicated to the analysis of the diversity of human Y chromosome haplotypes. The objectives of the study were to identify and present the most cited publications and references with the highest number of citations, and to highlight current publications at the national level.

4.
Cureus ; 16(6): e62505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887750

ABSTRACT

BACKGROUND: Y chromosome analysis is used in various fields of forensic genetics, genetic genealogy, and evolutionary research, due to its unique characteristics. Short tandem repetitions (STR) are particularly relevant in population genetic studies. The aim of this study is to analyze the genetic profile of two populations in the Apuseni Mountains area, Baița and Roșia Montana, Romania. METHODS: 27 STR loci of the Y chromosome were analyzed to investigate the genetic profile of two populations from the Apuseni Mountains area. Investigating genetic diversity by analyzing allele frequency, haplotype frequency, calculating forensic parameters, and presenting the main haplogroups identified based on Y-STR markers. RESULTS: Gene diversity in the batch from Baița varies from 0.515 for the DYS393 locus to 0.947 for the DYS385 locus. In the Roșia Montana population, gene diversity ranges from 0.432 for DYS393 to 0.931 for DYS385. The haplotype diversity in Roșia Montana was 0.991, and the haplotype diversity was 1.000 in the population from Baița. A total of nine haplogroups was identified in the batch from Baița, while only seven haplogroups were observed in the batch from Roșia Montana. Both groups are based on the same five major haplogroups (E, G, I, J, and R) and the most common haplogroup is R1b in both populations. CONCLUSION: In this study, the genetic diversity of two distinct populations was assessed using genetic analyses based on different markers. Analysis of Y-STR profiles revealed significant genetic diversity in both studied groups. All haplogroups identified were similar to those present in other Romanian populations.

5.
Sci Rep ; 14(1): 14046, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890398

ABSTRACT

Elucidating genetic diversity within wild forms of modern crops is essential for understanding domestication and the possibilities of wild germplasm utilization. Gossypium hirsutum is a predominant source of natural plant fibers and the most widely cultivated cotton species. Wild forms of G. hirsutum are challenging to distinguish from feral derivatives, and truly wild populations are uncommon. Here we characterize a population from Mound Key Archaeological State Park, Florida using genome-wide SNPs extracted from 25 individuals over three sites. Our results reveal that this population is genetically dissimilar from other known wild, landrace, and domesticated cottons, and likely represents a pocket of previously unrecognized wild genetic diversity. The unexpected level of divergence between the Mound Key population and other wild cotton populations suggests that the species may harbor other remnant and genetically distinct populations that are geographically scattered in suitable habitats throughout the Caribbean. Our work thus has broader conservation genetic implications and suggests that further exploration of natural diversity in this species is warranted.


Subject(s)
Genetic Variation , Gossypium , Polymorphism, Single Nucleotide , Florida , Gossypium/genetics , Phylogeny , Domestication , Genetics, Population , Genome, Plant
6.
BMC Ecol Evol ; 24(1): 80, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872114

ABSTRACT

BACKGROUND: Sassafras tzumu, an elegant deciduous arboreal species, belongs to the esteemed genus Sassafras within the distinguished family Lauraceae. With its immense commercial value, escalating market demands and unforeseen human activities within its natural habitat have emerged as new threats to S. tzumu in recent decades, so it is necessary to study its genetic diversity and influencing factors, to propose correlative conservation strategies. RESULTS: By utilizing genotyping-by-sequence (GBS) technology, we acquired a comprehensive database of single nucleotide polymorphisms (SNPs) from a cohort of 106 individuals sourced from 13 diverse Sassafras tzumu natural populations, scattered across various Chinese mountainous regions. Through our meticulous analysis, we aimed to unravel the intricate genetic diversity and structure within these S. tzumu populations, while simultaneously investigating the various factors that potentially shape genetic distance. Our preliminary findings unveiled a moderate level of genetic differentiation (FST = 0.103, p < 0.01), accompanied by a reasonably high genetic diversity among the S. tzumu populations. Encouragingly, our principal component analysis painted a vivid picture of two distinct genetic and geographical regions across China, where gene flow appeared to be somewhat restricted. Furthermore, employing the sophisticated multiple matrix regression with randomization (MMRR) analysis method, we successfully ascertained that environmental distance exerted a more pronounced impact on genetic distance when compared to geographical distance (ßE = 0.46, p < 0.01; ßD = 0.16, p < 0.01). This intriguing discovery underscores the potential significance of environmental factors in shaping the genetic landscape of S. tzumu populations. CONCLUSIONS: The genetic variance among populations of S. tzumu in our investigation exhibited a moderate degree of differentiation, alongside a heightened level of genetic diversity. The environmental distance of S. tzumu had a greater impact on its genetic diversity than geographical distance. It is of utmost significance to formulate and implement meticulous management and conservation strategies to safeguard the invaluable genetic resources of S. tzumu.


Subject(s)
Genetic Variation , Lauraceae , Polymorphism, Single Nucleotide , China , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics , Lauraceae/genetics , Gene Flow , Environment , Ecosystem
7.
Front Genet ; 15: 1396888, 2024.
Article in English | MEDLINE | ID: mdl-38873115

ABSTRACT

Breeding resilient cultivars with increased tolerance to environmental stress and enhanced resistance to pests and diseases demands pre-breeding efforts that include understanding genetic diversity. This study aimed to evaluate the genetic diversity and population structure of 265 pea accessions. The diversity arrays technology (DArT) genotyping method was employed to identify single-nucleotide polymorphisms (SNPs) and silico markers. After stringent filtering, 6966 SNP and 8,454 silico markers were selected for diversity analysis. Genetic diversity was estimated by grouping accessions based on plant material type, geographic origin, growth habit, and seed color. Generally, diversity estimations obtained using SNPs were similar to those estimated using silico markers. The polymorphism information content (PIC) of the SNP markers ranged from 0.0 to 0.5, with a quarter of them displaying PIC values exceeding 0.4, making them highly informative. Analysis based on plant material type revealed narrow observed heterozygosity (Ho = 0.02-0.03) and expected heterozygosity (He = 0.26-0.31), with landrace accessions exhibiting the highest diversity. Geographic origin-based diversity analysis revealed Ho = 0.02-0.03 and He = 0.22 to 0.30, with European accessions showing the greatest diversity. Moreover, private alleles unique to landrace (4) and European (22) accessions were also identified, which merit further investigation for their potential association with desirable traits. The analysis of molecular variance revealed a highly significant genetic differentiation among accession groups classified by seed color, growth habit, plant material types, and geographic origin (p < 0.01). Principal coordinate analysis and neighbor-joining cluster analysis revealed weak clustering of accessions at different grouping levels. This study underscores the significance of genetic diversity in pea collections, offering valuable insights for targeted breeding and conservation efforts. By leveraging genomic data and exploring untapped genetic resources, pea breeding programs can be fortified to ensure sustainable plant protein production and address future challenges in agriculture.

8.
Front Genet ; 15: 1385611, 2024.
Article in English | MEDLINE | ID: mdl-38873114

ABSTRACT

Knowledge about genetic diversity and population structure among goat populations is essential for understanding environmental adaptation and fostering efficient utilization, development, and conservation of goat breeds. Uganda's indigenous goats exist in three phenotypic groups: Mubende, Kigezi, and Small East African. However, a limited understanding of their genetic attributes and population structure hinders the development and sustainable utilization of the goats. Using the Goat Illumina 60k chip International Goat Genome Consortium V2, the whole-genome data for 1,021 indigenous goats sourced from 10 agroecological zones in Uganda were analyzed for genetic diversity and population structure. A total of 49,337 (82.6%) single-nucleotide polymorphism markers were aligned to the ARS-1 goat genome and used to assess the genetic diversity, population structure, and kinship relationships of Uganda's indigenous goats. Moderate genetic diversity was observed. The observed and expected heterozygosities were 0.378 and 0.383, the average genetic distance was 0.390, and the average minor allele frequency was 0.30. The average inbreeding coefficient (Fis) was 0.014, and the average fixation index (Fst) was 0.016. Principal component analysis, admixture analysis, and discriminant analysis of principal components grouped the 1,021 goat genotypes into three genetically distinct populations that did not conform to the known phenotypic populations but varied across environmental conditions. Population 1, comprising Mubende (90%) and Kigezi (8.1%) goats, is located in southwest and central Uganda, a warm and humid environment. Population 2, which is 59% Mubende and 49% Small East African goats, is located along the Nile Delta in northwestern Uganda and around the Albertine region, a hot and humid savannah grassland. Population 3, comprising 78.4% Small East African and 21.1% Mubende goats, is found in northeastern to eastern Uganda, a hot and dry Commiphora woodlands. Genetic diversity and population structure information from this study will be a basis for future development, conservation, and sustainable utilization of Uganda's goat genetic resources.

9.
BMC Ecol Evol ; 24(1): 78, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862896

ABSTRACT

BACKGROUND: Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. RESULTS: Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. CONCLUSION: Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.


Subject(s)
Astacoidea , Conservation of Natural Resources , Polymorphism, Single Nucleotide , Animals , Astacoidea/genetics , Genetic Variation/genetics , Genomics/methods
10.
Front Genet ; 15: 1368843, 2024.
Article in English | MEDLINE | ID: mdl-38863443

ABSTRACT

Dengue has been one of the major public health problems in Malaysia for decades. Over 600,000 dengue cases and 1,200 associated fatalities have been reported in Malaysia from 2015 to 2021, which was 100% increase from the cumulative total of dengue cases reported during the preceding 07-year period from 2008 to 2014. However, studies that describe the molecular epidemiology of dengue in Malaysia in recent years are limited. In the present study, we describe the genetic composition and dispersal patterns of Dengue virus (DENV) by using 4,004 complete envelope gene sequences of all four serotypes (DENV-1 = 1,567, DENV-2 = 1,417, DENV-3 = 762 and DENV-4 = 258) collected across Malaysia from 2015 to 2021. The findings revealed that DENV populations in Malaysia were highly diverse, and the overall heterogeneity was maintained through repetitive turnover of genotypes. Phylogeography analyses suggested that DENV dispersal occurred through an extensive network, mainly among countries in South and East Asia and Malaysian states, as well as among different states, especially within Peninsular Malaysia. The results further suggested Selangor and Johor as major hubs of DENV emergence and spread in Malaysia.

11.
G3 (Bethesda) ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869232

ABSTRACT

Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 190). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0% and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.

12.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850488

ABSTRACT

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Subject(s)
Chiroptera , Enterocytozoon , Genotype , Microsporidiosis , Phylogeny , Chiroptera/parasitology , Chiroptera/microbiology , Animals , Thailand/epidemiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Prevalence , Humans , Sequence Analysis, DNA , Zoonoses/parasitology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics
13.
Article in English | MEDLINE | ID: mdl-38872038

ABSTRACT

Anthropogenic stressors can have an impact in a broad range of physiological processes and can be a major selective force leading to rapid evolution and local population adaptation. In this study, three populations of the invasive crayfish Procambarus clarkii were investigated. They are geographically separated for at least 20 years, and live in different abiotic environments: a freshwater inland lake (Salagou lake) with no major anthropogenic influence and two other coastal wetlands regularly polluted by pesticides along the Mediterranean coast (Camargue region and Bages-Sigean lagoon). Collected adults were genetically characterized using the mitochondrial COI gene and haplotype frequencies were analyzed for genetic variability within and between populations. Results revealed a higher genetic diversity for these invasive populations than any previous report in France, with more than seven different haplotypes in a single population. The contrasting genetic diversity between the Camargue and the other two populations suggest different times and sources of introduction. To identify differences in key physiological responses between these populations, individuals from each population were maintained in controlled conditions. Data on oxygen consumption rates indicate that the Salagou and Bages-Sigean populations possess a high inter-individual variability compared to the Camargue population. The low individual variability of oxygen consumption and low genetic diversity suggest a specific local adaptation for the Camargue population. Population-specific responses were identified when individuals were exposed to a pesticide cocktail containing azoxystrobin and oxadiazon at sublethal concentrations. The Salagou population was the only one with altered hydro-osmotic balance due to pollutant exposure and a change in protease activity in the hepatopancreas. These results revealed different phenotypic responses suggesting local adaptations at the population level.

14.
J Anim Sci ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874306

ABSTRACT

With more than 150 recognized breeds, donkeys assume relevant economic importance, especially in developing countries. Even if the estimated number of heads worldwide is 53M, this species received less attention than other livestock species. Italy has traditionally been considered one of the cradles of European donkey breeding, and despite a considerable loss of biodiversity, today still counts nine autochthonous populations. A total of 220 animals belonging to 9 different populations were genotyped using the double-digest restriction site associated DNA (ddRAD) sequencing to investigate the pattern of diversity using a multi-technique approach. A total of 418,602,730 reads were generated and successfully demultiplexed to obtain a medium-density SNP genotypes panel with about 27K markers. The diversity indices showed moderate levels of variability. The genetic distances and relationships, largely agree with the breeding history of the donkey populations under investigation. The results highlighted the separation of populations based on their genetic origin or geographical proximity between breeding areas, showed low to moderate levels of admixture, and indicated a clear genetic difference in some cases. For some breeds, the results also validate the success of proper management conservation plans. Identified ROH islands, mapped within genomic regions related to immune response and local adaptation, are consistent with the characteristics of the species known for its rusticity and adaptability. This study is the first exhaustive genome-wide analysis of the diversity of Italian donkey populations. The results emphasized the high informativeness of genome-wide markers retrieved through the ddRAD approach. The findings take on great significance in designing and implementing conservation strategies. Standardized genotype arrays for donkey species would make it possible to combine worldwide datasets to provide further insights on the evolution of the genomic structure and origin of this important genetic resource.

15.
Front Genet ; 15: 1374263, 2024.
Article in English | MEDLINE | ID: mdl-38831774

ABSTRACT

Rana hanluica: an endemic amphibian of China, is found in the hills and mountains south of the Yangtze River. In this comprehensive study, we collected 162 samples from 14 different localities to delve into the genetic diversity of Rana hanluica using mitochondrial Cytb and nuclear RAG2 as genetic markers. Our findings reveal that the Nanling Mountains, specifically regions like Jiuyi Shan, Jinggang Shan, Mang Shan, and Qiyun Shan, are genetic hotspots harboring remarkable diversity. The research results also indicate that there is gene flow among the various populations of the species, and no distinct population structure has formed, which may be due to migration. Moreover, populations in some regions, as well as the overall population, show signs of a possible genetic bottleneck, which we speculate may have been caused by climate change. However, given the exploratory nature of our study, further investigations are warranted to confirm these observations. Through phylogenetic analyses, we uncovered indications that R. hanluica might have originated within the Nanling region, dispersing along the east-west mountain ranges, with a significant contribution originating from Jiuyi Shan. The genetic distributions uncovered through our research reflect historical migratory patterns, evident in the distinct haplotypes of the RAG2 gene between the western and eastern parts of the studied area. Moreover, Heng Shan and Yangming Shan exhibited unique genetic signatures, possibly influenced by geographic isolation, which has shaped their distinct genotypes. The insights gained from this study hold profound implications for conservation efforts. By identifying regions rich in genetic diversity and crucial gene flow corridors, we can develop more effective conservation strategies. Preserving these genetically diverse areas, especially within the Nanling Mountains, is vital for maintaining the evolutionary potential of R. hanluica. In conclusion, our research has laid a solid foundation for understanding the genetic landscape of R. hanluica, shedding light on its origins, population structures, and evolutionary trajectories. This knowledge will undoubtedly guide future research endeavors and inform conservation strategies for this endemic amphibian.

16.
Sci Rep ; 14(1): 13161, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849440

ABSTRACT

Physella acuta is a freshwater snail native to North America. Understanding the phylogeography and genetic structure of P. acuta will help elucidate its evolution. In this study, we used mitochondrial (COI and 16S rDNA) and nuclear (ITS1) markers to identify the species and examine its genetic diversity, population structure, and demographic history of P. acuta in Thailand. Phylogenetic and network analyses of P. acuta in Thailand pertained to clade A, which exhibits a global distribution. Analysis of the genetic structure of the population revealed that the majority of pairwise comparisons showed no genetic dissimilarity. An isolation-by-distance test indicates no significant correlation between genetic and geographical distances among P. acuta populations, suggesting that gene flow is not restricted by distance. Demographic history and haplotype network analyses suggest a population expansion of P. acuta, as evidenced by the star-like structure detected in the median-joining network. Based on these results, we concluded that P. acuta in Thailand showed gene flow and recent population expansion. Our findings provide fundamental insights into the genetic variation of P. acuta in Thailand.


Subject(s)
Genetic Variation , Phylogeny , Phylogeography , RNA, Ribosomal, 16S , Animals , Thailand , RNA, Ribosomal, 16S/genetics , Gastropoda/genetics , Gastropoda/classification , Gene Flow , Electron Transport Complex IV/genetics , Haplotypes , Genetic Markers , Genetics, Population , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Snails/genetics , Snails/classification , Genes, Mitochondrial
17.
Mol Ecol ; : e17423, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825968

ABSTRACT

If similar evolutionary forces maintain intra- and interspecific diversity, patterns of diversity at both levels of biological organization can be expected to covary across space. Although this prediction of a positive species-genetic diversity correlation (SGDC) has been tested for several taxa in natural landscapes, no study has yet evaluated the influence of the community delineation on these SGDCs. In this study, we focused on tropical fishes of the Indo-Pacific Ocean, using range-wide single nucleotide polymorphism data for a deep-sea fish (Etelis coruscans) and species presence data of 4878 Teleostei species. We investigated whether a diversity continuum occurred, for different community delineations (subfamily, family, order and class) and spatial extents, and which processes explained these diversity patterns. We found no association between genetic diversity and species richness (α-SGDC), regardless of the community and spatial extent. In contrast, we evidenced a positive relationship between genetic and species dissimilarities (ß-SGDC) when the community was defined at the subfamily or family level of the species of interest, and when the Western Indian Ocean was excluded. This relationship was related to the imprint of dispersal processes across levels of biological organization in Lutjanidae. However, this positive ß-SGDC was lost when considering higher taxonomic communities and at the scale of the entire Indo-Pacific, suggesting different responses of populations and communities to evolutionary processes at these scales. This study provides evidence that the taxonomic scale at which communities are defined and the spatial extent are pivotal to better understand the processes shaping diversity across levels of biological organization.

18.
G3 (Bethesda) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833595

ABSTRACT

Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.

19.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891680

ABSTRACT

Red-crowned cranes (Grus japonensis) consist of two distinct groups: the continental population and the island population. The island population, localized in Hokkaido, Japan, exhibits very low genetic diversity due to its rapid recovery from the brink of extinction. Our previous research in 2018 highlighted a possible mating between a male from the continental population, with the Gj5 haplotype, and a female from the island population, with the Gj2 haplotype, at Hitominuma Sawmp shore in northern Hokkaido. The present study attempted to unravel the distribution of their offspring by examining the major histocompatibility complex (MHC) of this mixed breeding pair compared with samples collected from cranes in northern and southeastern Hokkaido between 2008 and 2022. The analysis identified 55 MHC types, including 10 known types in a dataset of 89 crane samples, based on amino acid sequences. A total of 58 MHC types were recognized, based on nucleotide sequences, as there were many cases in which the same amino acid sequence had different nucleotide sequences. The five DNA types of MHC in the Hitominuma Swamp male were predominantly identified in eight cranes from northern Hokkaido and one chick from southeastern Hokkaido. In addition, population genetic analysis, based on insertion/deletion (InDel) polymorphisms, indicates distinct population differentiation between the northern and southeastern regions of Hokkaido. These results suggest that genetic contributions from the continental red-crowned crane population have already been integrated into the Hokkaido populations, with a more pronounced influence in northern Hokkaido.

20.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891676

ABSTRACT

The pig industry is usually considered an intensive livestock industry, mainly supported by hybrid breeding between commercial pig breeds. However, people's pursuit of a more natural environment and higher meat quality has led to an increasing demand for eco-friendly and diverse pig feeding systems. Therefore, the importance of rearing and conserving local pig breeds is increasing. The Livni pig is a local breed with good adaptability to the environmental and fodder conditions in central Russia. In this study, we aimed to analyze the genetic diversity and population structure of Livni pigs using whole-genome single nucleotide polymorphism (SNP) data. We utilized the Porcine GGP HD BeadChip on genotype samples from old (n = 32, 2004) and modern (n = 32, 2019) populations of Livni pigs. For the museum samples of Livni pigs (n = 3), we extracted DNA from their teeth, performed genomic sequencing, and obtained SNP genotypes from the whole-genome sequences. SNP genotypes of Landrace (n = 32) and Large White (n = 32) pigs were included for comparative analysis. We observed that the allelic richness of Livni pigs was higher than those of Landrace and Large White pigs (AR = 1.775-1.798 vs. 1.703 and 1.668, respectively). The effective population size estimates (NE5 = 108 for Livni pigs, NE5 = 59 for Landrace and Large White pigs) confirmed their genetic diversity tendency. This was further supported by the length and number of runs of homozygosity, as well as the genomic inbreeding coefficient (almost twofold lower in Livni pigs compared to Landrace and Large White pigs). These findings suggest that the Livni pig population exhibits higher genetic diversity and experiences lower selection pressure compared to commercial pig populations. Furthermore, both principal component and network tree analyses demonstrated a clear differentiation between Livni pigs and transboundary commercial pigs. The TreeMix results indicated gene flow from Landrace ancestors to Livni pigs (2019) and from Large White ancestors to Livni pigs (2004), which was consistent with their respective historical breeding backgrounds. The comparative analysis of museum, old, and modern Livni pigs indicated that the modern Livni pig populations have preserved their historical genomic components, suggesting their potential suitability for future design selection programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...