Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 626
Filter
1.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931023

ABSTRACT

This article studies the morphological parameters of vegetative and generative organs of different age groups of Crataegus ambigua from four populations in Western Karatau (Mangistau region, Kazakhstan). In this study, we examined four populations: Sultan Epe, Karakozaiym, Emdikorgan, and Samal, all located in various gorges of Western Karatau. Several phylogenetic inference methods were applied, using six genetic markers to reconstruct the evolutionary relationships between these populations: atpF-atpH, internal transcribed spacer (ITS), matK, psbK-psbI, rbcL, and trnH-psbA. We also used a statistical analysis of plants' vegetative and generative organs for three age groups (virgin, young, and adult generative). According to the age structure, Samal has a high concentration of young generative plants (42.3%) and adult generative plants (30.9%). Morphological analysis showed the significance of the parameters of the generative organs and separated the Samal population into a separate group according to the primary principal component analysis (PCoA) coordinates. The results of the floristic analysis showed that the Samal populations have a high concentration of species diversity. Comparative dendrograms using UPGMA (unweighted pair group method with arithmetic mean) showed that information gleaned from genetic markers and the psbK-psbI region can be used to determine the difference between the fourth Samal population and the other three.

2.
Insects ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921134

ABSTRACT

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

3.
EBioMedicine ; 105: 105190, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901148

ABSTRACT

BACKGROUND: Plasmodium blood-stage parasites balance asexual multiplication with gametocyte development. Few studies link these dynamics with parasite genetic markers in vivo; even fewer in longitudinally monitored infections. Environmental influences on gametocyte formation, such as mosquito exposure, may influence the parasite's investment in gametocyte production. METHODS: We investigated gametocyte production and asexual multiplication in two Plasmodium falciparum infected populations; a controlled human malaria infection (CHMI) study and a 28-day observational study in naturally infected individuals in Burkina Faso with controlled mosquito exposure. We measured gene transcript levels previously related to gametocyte formation (ap2-g, surfin1.2, surfin13.1, gexp-2) or inhibition of asexual multiplication (sir2a) and compared transcript levels to ring-stage parasite and mature gametocyte densities. FINDINGS: Three of the five markers (ap2-g, surfin1.2, surfin13.1) predicted peak gametocytaemia in the CHMI study. An increase in all five markers in natural infections was associated with an increase in mature gametocytes 14 days later; the effect of sir2a on future gametocytes was strongest (fold change = 1.65, IQR = 1.22-2.24, P = 0.004). Mosquito exposure was not associated with markers of gametocyte formation (ap2-g P = 0.277; sir2a P = 0.499) or carriage of mature gametocytes (P = 0.379). INTERPRETATION: All five parasite genetic markers predicted gametocyte formation over a single cycle of gametocyte formation and maturation in vivo; sir2a and ap2-g were most closely associated with gametocyte growth dynamics. We observed no evidence to support the hypothesis that exposure to Anopheles mosquito bites stimulates gametocyte formation. FUNDING: This work was funded by the Bill & Melinda Gates Foundation (INDIE OPP1173572), the European Research Council fellowship (ERC-CoG 864180) and UKRI Medical Research Council (MR/T016272/1) and Wellcome Center (218676/Z/19/Z).

4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731950

ABSTRACT

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Subject(s)
Periodontal Ligament , Single-Cell Analysis , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Single-Cell Analysis/methods , Cells, Cultured , RNA-Seq/methods , Sequence Analysis, RNA/methods , Male , Female , Gene Expression Profiling/methods , Adult , Transcriptome , Single-Cell Gene Expression Analysis
5.
Medicina (Kaunas) ; 60(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792999

ABSTRACT

In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.


Subject(s)
Arthritis, Psoriatic , Cytokines , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens , Psoriasis , Humans , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/immunology , Psoriasis/genetics , Psoriasis/immunology , HLA Antigens/genetics
6.
J Fish Biol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711300

ABSTRACT

The present drainage network of Bulgaria is the result of a complex Neogene and Quaternary evolution. Karst, which has developed on 23% of the territory, further complicates the hydrological pattern. Fresh waters of Bulgaria drain into the Black Sea and the Aegean Sea basins and can be roughly divided into the Danube (Middle and Lower Danube), non-Danube Black Sea, East Aegean, and West Aegean hydrological regions. Phoxinus, a small leuciscid fish, has a mosaic distribution in all four of these regions, inhabiting small mountainous and semi-mountainous streams. Based on morphology, it was identified as three species, Phoxinus phoxinus in the Danube, Phoxinus strandjae in the non-Danube, and Phoxinus strymonicus in West Aegean region. Later, molecular data revealed Phoxinus csikii and Phoxinus lumaireul in the Middle Danube and P. csikii in the Lower Danube. Phoxinus has been the focus of many studies, showing a high molecular and morphological diversity, which is not entirely consistent with previous morphology-only-based taxonomic concepts. In this study, molecular (a mitochondrial marker and a nuclear marker) and morphological data from both historical and recently sampled collections were analysed to assess the applicability of the integrative approach in Phoxinus. The results showed a significant influence of the complex paleo- and recent hydrology on the currently observed genetic structure of the considered populations and species. Furthermore, the study also demonstrated a strong influence of phenotypic plasticity on the morphological analysis of Phoxinus and the lack of a clear differentiation between P. csikii and P. strandjae. A barcoded specimen was designated as neotype to fix the species named P. strandjae in the current taxonomic concept. Finally, a significant discordance between genetically delimited clades and phenotypic groups did not allow a proper delineation of the species distributed in Bulgaria, demonstrating that more molecular markers are needed for further taxonomic study of the Phoxinus complex.

7.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660801

ABSTRACT

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System , Signal Transduction , Animals , Female , Humans , Male , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hypoxia/metabolism , Hypoxia/complications , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics
8.
Strahlenther Onkol ; 200(7): 568-582, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38668865

ABSTRACT

PURPOSE: To identify potential Single Nucleotide Polymorphisms (SNPs) of susceptibility for the development of acute radiation dermatitis in head and neck cancer patients, and also to verify the association between SNPs and the severity of RD. METHODS: This systematic review was reported according to the PRISMA guideline. The proportion meta-analysis was performed to identify the prevalence of genetic markers by geographical region and radiation dermatitis severity. The meta-analysis was performed to verify the association between genetic markers and RD severity. The certainty of the evidence was assessed by GRADE. RESULTS: Thirteen studies were included. The most prevalent SNPs were XRCC3 (rs861639) (36%), TGFß1 (rs1800469) (35%), and RAD51 (rs1801321) (34%). There are prevalence studies in Europe and Asia, with a similar prevalence for all SNPs (29-40%). The prevalence was higher in patients who developed radiation dermatitis ≤2 for any subtype of genes (75-76%). No SNP showed a statistically significant association with very low certainty of evidence. CONCLUSION: The most prevalent SNPs may be predictors of acute RD. The analysis of SNP before starting radiation therapy may be a promising method to predict the risk of developing radiation dermatitis and allow radiosensitive patients to have a customized treatment. This current review provides new research directions.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Radiodermatitis , Humans , Genetic Markers/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Radiodermatitis/genetics , Risk Factors
9.
Curr Probl Cardiol ; 49(7): 102588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657720

ABSTRACT

Cardiovascular Disorders (CVDs) are the leading cause mortality in developed as well as developing nations, and has now emerged as one of the leading causes of disability and mortality around the globe. According to the World Health Organization, four out of every five patients with cardiovascular disease die from a myocardial infarction each year. Numerous genes have been linked to coronary artery disease, influencing mechanisms such as blood pressure regulation, lipid metabolism, inflammation, and cardiac activity. Genetic variations or mutations in these genes can affect lipid metabolism, blood pressure management, and heart function, increasing the risk of obesity, metabolic disorders, and resulting in the development of cardiovascular disease. Understanding the role of genes and related complications are essential for the identification, management, and prevention of cardiovascular conditions. Performing a genetic test for variations in the gene may help identify people as well as their families who are at a greater risk of heart disease, which enables risk identification and timely intervention. . This article investigates the applications of genetic biomarkers in cardiac disorders such as coronary artery disease, hypertension, arrhythmias, cardiomyopathy, and heart failure, with an emphasis on individual genes and their effects on mutation.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Genetic Markers , Genetic Predisposition to Disease , Hypertension/genetics , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Genetic Testing/methods , Mutation , Heart Failure/genetics , Heart Failure/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/diagnosis
10.
Yi Chuan ; 46(4): 306-318, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632093

ABSTRACT

With the increasing number of complex forensic cases in recent years, it's more important to combine the different types of genetic markers such as short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (InDels), and microhaplotypes (MHs) to provide more genetic information. In this study, we selected totally 201 genetic markers, including 24 autosomes STRs (A-STRs), 24 Y chromosome STRs (Y-STRs), 110 A-SNPs, 24 Y-SNPs, 9 A-InDels, 1 Y-InDel, 8 MHs, and Amelogenin to establish the HID_AM Panel v1.0, a Next-Generation Sequencing (NGS) detection system. According to the validation guidelines of the Scientific Working Group on DNA Analysis Methods (SWGDAM), the repeatability, accuracy, sensitivity, suitability for degraded samples, species specificity, and inhibitor resistance of this system were assessed. The typing results on 48 STRs and Amelogenin of this system were completely consistent with those obtained using capillary electrophoresis. This system accurately detected 79 SNPs as parallelly confirmed by a FGx sequencer with the ForenSeq™ DNA Signature Prep Kit. Complete allele typing results could be obtained with a DNA input of no less than 200 pg. The detection success rate of this system was significantly higher than that of the GlobalFiler™ kit when the degradation index of mock degraded sample was greater than 15.87. When the concentration of hematin in the amplification system was ≤40 µmol/L, indigo blue was ≤2 mmol/L, or humic acid was ≤15 ng/µL, amplification was not significantly inhibited. The system barely amplified the DNA extract from duck, mouse, cow, rabbit, and chick. The detection rate of STRs on routine samples of this panel is 99.74%, while all the SNPs, InDels, and MHs were successfully detected. In summary, we setup a NGS individual typing panel including 201 genetic markers with the high accuracy, sensitivity, species specificity, and inhibitors resistance, which is applicable for individual identification of degraded samples.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Female , Cattle , Animals , Mice , Rabbits , DNA Fingerprinting/methods , Genetic Markers , Amelogenin/genetics , Genotype , Polymerase Chain Reaction , Reproducibility of Results , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats , DNA , Sequence Analysis, DNA/methods
11.
Biomedicines ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672085

ABSTRACT

Despite technical and pharmacological advancements in recent years, including optimized therapies and personalized medicine, postoperative pain management remains challenging and sometimes undertreated. This review aims to summarize and update how genotype-guided therapeutics within personalized medicine can enhance postoperative pain management. Several studies in the area have demonstrated that genotype-guided therapy has the ability to lower opioid consumption and improve postoperative pain. Gene mutations, primarily OPRM1, CYP2D6, CYP2C9, COMT and ABCB1, have been shown to exert nuanced influences on analgesic response and related pharmacological outcomes. This review underscores the integration of pharmacogenetic-guided personalized medicine into perioperative care, particularly when there is uncertainty regarding opioid prescriptions. This approach leads to superior outcomes in terms of postoperative pain relief and reduced morbidity for numerous patients.

12.
Hum Psychopharmacol ; : e2898, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676936

ABSTRACT

OBJECTIVES: The pathology of Tardive Dyskinesia (TD) has yet to be fully understood, but there have been proposed hypotheses for the cause of this condition. Our team previously reported a possible association of TD with the Complement Component C4 gene in the HLA region. In this study, we explored the HLA region further by examining two previously identified schizophrenia-associated HLA-region single-nucleotide polymorphisms (SNPs), namely rs13194504 and rs210133. METHODS: The SNPs rs13194504 and rs210133 were tested for association with the occurrence and severity of TD in a sample of 172 schizophrenia patients who were recruited for four studies from three different clinical sites in Canada and USA. RESULTS: The rs13194504 AA genotype was associated with decreased severity for TD as measured by Abnormal Involuntary Movement Scale (AIMS) scores (p = 0.047) but not for TD occurrence. SNP rs210133 was not significantly associated with either TD occurrence or AIMS scores. CONCLUSION: Our findings suggest that the rs13194504 AA genotype may play a role in TD severity, while SNP rs210133 may not have a major role in the risk or severity of TD.

13.
Front Vet Sci ; 11: 1376898, 2024.
Article in English | MEDLINE | ID: mdl-38590542

ABSTRACT

The fish louse Argulus japonicus, a branchiuran crustacean of the Argulidae family, is attracting increasing attention because of its parasitic tendencies and significant health threats to global fish farming. The mitogenomes can yield a foundation for studying epidemiology, genetic diversity, and molecular ecology and therefore may be used to assist in the surveillance and control of A. japonicus. In this study, we sequenced and assembled the complete mitogenome of A. japonicus to shed light on its genetic and evolutionary blueprint. Our investigation indicated that the 15,045-bp circular genome of A. japonicus encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs) with significant AT and GC skews. Comparative genomics provided an evolutionary scenario for the genetic diversity of 13 PCGs: all were under purifying selection, with cox1 and nad6 having the lowest and highest evolutionary rates, respectively. Genome-wide phylogenetic trees established a close relationship between species of the families Argulidae (Arguloida) and Armilliferidae (Porocephalida) within Crustacea, and further, A. japonicus and Argulus americanus were determined to be more closely related to each other than to others within the family Argulidae. Single PCG-based phylogenies supported nad1 and nad6 as the best genetic markers for evolutionary and phylogenetic studies for branchiuran crustaceans due to their similar phylogenetic topologies with those of genome-based phylogenetic analyses. To sum up, these comprehensive mitogenomic data of A. japonicus and related species refine valuable marker resources and should contribute to molecular diagnostic methods, epidemiological investigations, and ecological studies of the fish ectoparasites in Crustacea.

14.
J Parasitol ; 110(2): 114-126, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38503317

ABSTRACT

An inventory of parasites infecting the jaguar (Panthera onca) across its distribution range is relevant for the conservation of this threatened big cat. In this study, we report the occurrence of helminths in a jaguar from Mexico using morphological techniques (cleared and stained mounts and scanning electron microscopy) and partial sequences of the 28S ribosomal RNA (28S rRNA) gene and the cytochrome c oxidase 1 mitochondrial (COI) gene. We also provide an updated list of helminth species reported in jaguars in the Americas. Three helminth taxa are identified in the jaguar examined from Mexico: Toxocara cati, Physaloptera sp., and Taenia sp. The new 28S rRNA sequences of To. cati, Physaloptera sp., and Taenia sp. and the COI sequence of Taenia sp. corroborate the identity of the helminths isolated from this host. One hundred and twenty-nine records of helminths parasitizing jaguars from 49 studies up to May 2023 were identified in the Americas. In most of these studies (73.6%), helminths were identified using coproparasitological techniques. Sixteen helminths (7 nematodes, 5 cestodes, 3 acanthocephalans, and 1 trematode) were identified at the species level in free-ranging and captive jaguars. The study demonstrates the value of an integrative taxonomy approach to increase the accuracy of parasite identification in wildlife, especially when helminth specimens are scarce or poorly fixed.


Subject(s)
Helminths , Nematoda , Panthera , Animals , Panthera/genetics , Mexico/epidemiology , RNA, Ribosomal, 28S/genetics , Helminths/genetics
15.
Exp Ther Med ; 27(4): 146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476923

ABSTRACT

Asthenozoospermia, a male fertility disorder, has a complex and multifactorial etiology. Moreover, the effectiveness of different treatments for asthenozoospermia remains uncertain. Hence, by using bioinformatics techniques, the present study aimed to determine the underlying genetic markers and pathogenetic mechanisms associated with asthenozoospermia due to abnormal spermatogenesis and inflammation of the reproductive tract. GSE160749 dataset was downloaded from the Gene Expression Omnibus database, and the data were filtered to obtain 1336 differentially expressed genes (DEGs) associated with asthenozoospermia. These DEGs were intersected with the epithelial mesenchymal transition datasets to yield 61 candidate DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, and the results revealed that these candidate DEGs were significantly enriched in the enzyme-linked receptor pathway and the thyroid hormone pathway. A protein-protein interaction network was constructed to identify the key genes of asthenozoospermia. A total of five key genes were identified, among which SOX9 was significantly upregulated, while HSPA4, SMAD2, HIF1A and GSK3B were significantly downregulated. These findings were validated by conducting reverse transcription-quantitative PCR for clinical semen samples. To determine the underlying molecular mechanisms, a regulatory network of transcription factors and miRNA-mRNA interactions was predicted. The expression levels of HSPA4, SMAD2 and GSK3B were positively associated with several related etiological genes of asthenozoospermia. In total, five key genes were closely associated with the level and type of immune cells; higher levels of activated B cells and CD8 T cells were observed in asthenozoospermia. Thus, the findings of the present study may provide clues to determine the underlying novel diagnostic genetic markers and treatment strategies for asthenozoospermia.

17.
Prep Biochem Biotechnol ; : 1-11, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469867

ABSTRACT

Food falsification is a pressing issue in today's food industry, with fraudulent substitution of costly ingredients with cheaper alternatives occurring globally. Consequently, developing straightforward and efficient diagnostic systems to detect such fraud is a top priority in scientific research. The aim of the work was to develop a test system and protocol for polymerase chain reaction (PCR) to detect in food products of animal origin the substitution of expensive meat raw materials for by-products of poultry processing. For this, real-time polymerase chain reaction (RT-PCR) was used, which allows determining the qualitative and quantitative substitution in raw and technologically prepared products. Other methods for detecting falsification - enzyme immunoassay (ELISA/ELISA) or express methods in the form of a lateral flow immunoassay are less informative. The extraction of nucleic acids for real-time polymerase chain reaction depends on the source matrix, with higher concentrations obtained from germ cells and parenchymal organs. Extraction from muscle and plant tissues is more challenging, but thorough grinding of these samples improves nucleic acid concentration by 1.5 times using DNA extraction kits. The selection of primers and fluorescent probes through GenBank and PCR Primer Design/DNASTAR software enables efficient amplification and identification of target chicken DNA fragments in various matrices.

18.
G3 (Bethesda) ; 14(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38411620

ABSTRACT

Relatedness coefficients which seek the identity-by-descent of genetic markers are described. The markers are in groups of two, three or four, and if four, can consist of two pairs. It is essential to use cumulants (not moments) for four-marker-gene probabilities, as the covariance of homozygosity, used in four-marker applications, can only be described with cumulants. A covariance of homozygosity between pairs of markers arises when populations follow a mixture distribution. Also, the probability of four markers all identical-by-descent equals the normalized fourth cumulant. In this article, a "genetic marker" generally represents either a gene locus or an allele at a locus. Applications of three marker coefficients mainly involve conditional regression, and applications of four marker coefficients can involve identity disequilibrium. Estimation of relatedness using genetic marker data is discussed. However, three- and four-marker estimators suffer from statistical and numerical problems, including higher statistical variance, complexity of estimation formula, and singularity at some intermediate allele frequencies.


Subject(s)
Genetics, Population , Models, Genetic , Genetic Markers , Gene Frequency , Alleles , Probability , Homozygote
19.
Animals (Basel) ; 14(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396562

ABSTRACT

In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.

20.
Front Genet ; 15: 1335591, 2024.
Article in English | MEDLINE | ID: mdl-38404668

ABSTRACT

The primary focus of donkey hide gelatin processing lies in the dermal layer of donkey hide due to its abundant collagen content. However, the molecular mechanism involved in collagen organization and skin development in donkey skin tissue across various developmental stages remains incomplete. The current study aims to investigate the transcriptomic screening of lncRNAs and mRNA associated with skin development and collagen organization across different ages in Dezhou donkeys' skin. In the pursuit of this objective, we used nine skin tissue samples obtained from Dezhou donkeys at various ages including 8-month fetal stage, followed by 2 and 8 years. RNA-seq analysis was performed for the transcriptomic profiling of differentially expressed genes (DEGs) and lncRNAs associated with skin development in different age groups. Our investigation revealed the presence of 6,582, 6,455, and 405 differentially expressed genes and 654, 789, and 29 differentially expressed LncRNAs within the skin tissues of Dezhou donkeys when comparing young donkeys (YD) vs. middle-aged donkeys (MD), YD vs. old donkeys (OD), and MD vs. OD, respectively. Furthermore, we identified Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type III Alpha 1 Chain (COL3A1), and Collagen Type VI Alpha 5 Chain (COL6A5) as key genes involved in collagen synthesis, with COL1A1 being subject to cis-regulation by several differentially expressed LncRNAs, including ENSEAST00005041187, ENSEAST00005038497, and MSTRG.17248.1, among others. Interestingly, collagen organizational and skin development linked pathways including Protein digestion and absorption, metabolic pathways, Phosphatidylinositol 3-Kinase-Protein Kinase B signaling pathway (PI3K-Akt signaling pathway), Extracellular Matrix-Receptor Interaction (ECM-receptor interaction), and Relaxin signaling were also reported across different age groups in Dezhou donkey skin. These findings enhance our comprehension of the molecular mechanisms underlying Dezhou donkey skin development and collagen biosynthesis and organization, thus furnishing a solid theoretical foundation for future research endeavors in this domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...