Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61.913
Filter
1.
J Food Prot ; : 100324, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960322

ABSTRACT

Controlling Listeria in produce packinghouses can be challenging due to the large number of potential contamination routes. For example, repeated isolation of the same Listeria subtype in a packinghouse could indicate persistence in the packinghouse or reintroduction of the same Listeria from an upstream source. To improve understanding of Listeria transmission patterns in packinghouses, we performed a longitudinal study in four apple packinghouses, including testing of 1,339 environmental sponges and whole genome sequencing (WGS)-based characterization of 280 isolates. Root cause analysis and subsequent intervention implementation was also performed and assessed for effectiveness. Listeria prevalence among environmental sponges collected from the four packinghouses was 20% (range of 5 to 31% for individual packinghouses). Sites that showed high Listeria prevalence included drains, forklift tires and forks, forklift stops, and waxing area equipment frames. A total of 240/280 WGS-characterized isolates were represented in 41 clusters, each containing two or more isolates that differed by ≤50 high-quality single nucleotide polymorphisms (hqSNPs); 21 clusters were isolated from one packinghouse over ≥2 samplings (suggesting persistence or possibly reintroduction), while 11 clusters included isolates from >2 packinghouses, suggesting common upstream sources. Some interventions successfully (i) reduced Listeria detection on forklift tires and forks (across packinghouses) and (ii) mitigated packinghouse-specific Listeria issues (e.g., in catch pans). However, interventions that lacked enhanced equipment disassembly when persistence was suspected typically appeared to be unsuccessful. Overall, while our data suggest a combination of intensive environmental sampling with subtyping and root cause analysis can help identify effective interventions, implementation of effective interventions continues to be a challenge in packinghouses.

2.
J Hepatol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960375

ABSTRACT

BACKGROUND: The underlying mechanisms for the link between steatotic liver disease and cardiovascular and cancer outcomes are poorly understood. We aimed to use MRI-derived measures of liver fat and genetics to investigate causal mechanisms that link higher liver fat to various health outcomes. METHODS: We conducted a genome-wide association study on 37,358 UK Biobank participants to identify genetic variants associated with liver fat measured from MRI scans. We used Mendelian randomization approach to investigate the causal effect of liver fat on health outcomes independent of BMI, alcohol consumption and lipids using data from published GWAS and FinnGen. RESULTS: We identified 13 genetic variants associated with liver fat that showed differing risks to health outcomes. Genetic variants associated with impaired hepatic triglyceride export showed liver fat-increasing alleles to be correlated with a reduced risk of coronary artery disease and myocardial infarction but an elevated risk of type 2 diabetes; and variants associated with enhanced de novo lipogenesis showed liver fat-increasing alleles to be linked to a higher risk of myocardial infarction and coronary artery disease. Genetically higher liver fat content increased the risk of non-alcohol liver cirrhosis, hepatocellular and Intrahepatic bile ducts and gallbladder cancers, exhibiting a dose-dependent relationship, irrespective of the mechanism. CONCLUSION: This study provides fresh insight into the heterogeneous effect of liver fat on health outcomes. It challenges the notion that liver fat per se is an independent risk factor for cardiovascular disease, underscoring the dependency of this association on the specific mechanisms that drive fat accumulation in the liver. However, excess liver fat, regardless of how achieved, appears to be causally linked to liver cirrhosis and cancers in a dose dependent manner. IMPACT AND IMPLICATION: This research advances our understanding of the heterogeneity in mechanisms influencing liver fat accumulation, providing new insights into how liver fat accumulation may impact various health outcomes. The findings challenge the notion that liver fat is an independent risk factor for cardiovascular disease and highlight the mechanistic effect of some genetic variants on fat accumulation and the development of cardiovascular diseases. This study is of particular importance for healthcare professionals including physicians and researchers as well as patients as it allows for more targeted and personalised treatment by understanding the relationship between liver fat and various health outcomes. The findings emphasise the need for a personalised management approach and a reshaping of risk assessment criteria. It also provides room for prioritising a clinical intervention aimed at reducing liver fat content (likely by intentional weight loss, however, achieved) that could help protect against liver related fibrosis and cancer.

3.
Am J Clin Nutr ; 120(1): 129-144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38960570

ABSTRACT

BACKGROUND: Personalized nutrition (PN) has been proposed as a strategy to increase the effectiveness of dietary recommendations and ultimately improve health status. OBJECTIVES: We aimed to assess whether including omics-based PN in an e-commerce tool improves dietary behavior and metabolic profile in general population. METHODS: A 21-wk parallel, single-blinded, randomized intervention involved 193 adults assigned to a control group following Mediterranean diet recommendations (n = 57, completers = 36), PN (n = 70, completers = 45), or personalized plan (PP, n = 68, completers = 53) integrating a behavioral change program with PN recommendations. The intervention used metabolomics, proteomics, and genetic data to assist participants in creating personalized shopping lists in a simulated e-commerce retailer portal. The primary outcome was the Mediterranean diet adherence screener (MEDAS) score; secondary outcomes included biometric and metabolic markers and dietary habits. RESULTS: Volunteers were categorized with a scoring system based on biomarkers of lipid, carbohydrate metabolism, inflammation, oxidative stress, and microbiota, and dietary recommendations delivered accordingly in the PN and PP groups. The intervention significantly increased MEDAS scores in all volunteers (control-3 points; 95% confidence interval [CI]: 2.2, 3.8; PN-2.7 points; 95% CI: 2.0, 3.3; and PP-2.8 points; 95% CI: 2.1, 3.4; q < 0.001). No significant differences were observed in dietary habits or health parameters between PN and control groups after adjustment for multiple comparisons. Nevertheless, personalized recommendations significantly (false discovery rate < 0.05) and selectively enhanced the scores calculated with biomarkers of carbohydrate metabolism (ß: -0.37; 95% CI: -0.56, -0.18), oxidative stress (ß: -0.37; 95% CI: -0.60, -0.15), microbiota (ß: -0.38; 95% CI: -0.63, -0.15), and inflammation (ß: -0.78; 95% CI: -1.24, -0.31) compared with control diet. CONCLUSIONS: Integration of personalized strategies within an e-commerce-like tool did not enhance adherence to Mediterranean diet or improved health markers compared with general recommendations. The metabotyping approach showed promising results and more research is guaranteed to further promote its application in PN. This trial was registered at clinicaltrials.gov as NCT04641559 (https://clinicaltrials.gov/study/NCT04641559?cond=NCT04641559&rank=1).


Subject(s)
Diet, Mediterranean , Precision Medicine , Humans , Female , Male , Middle Aged , Adult , Single-Blind Method , Metabolomics , Nutritional Status , Biomarkers/blood , Feeding Behavior
4.
RNA ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960642

ABSTRACT

R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, Precise RNA-mediated INsertion of Transgenes (PRINT), relies on co-delivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.

5.
J Microbiol Biotechnol ; 34(7): 1443-1451, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38960875

ABSTRACT

Weizmannia coagulans can be used as a starter strain in fermented foods or as a probiotic. However, it is salt-sensitive. Here, W. coagulans genomes were compared with the genomes of strains of Bacillus species (B. licheniformis, B. siamensis, B. subtilis, and B. velezensis) that were isolated from fermented foods and show salt tolerance, to identify the basis for the salt-sensitivity of W. coagulans. Osmoprotectant uptake (Opu) systems transport compatible solutes into cells to help them tolerate osmotic stress. B. siamensis, B. subtilis, and B. velezensis each possess five Opu systems (OpuA, OpuB, OpuC, OpuD, and OpuE); B. licheniformis has all except OpuB. However, W. coagulans only has the OpuC system. Based on these findings, the opuA and opuB operons, and the opuD and opuE genes, were amplified from B. velezensis. Expression of each of these systems, respectively, in W. coagulans increased salt-tolerance. W. coagulans expressing B. velezensis opuA, opuD, or opuE grew in 10.5% NaCl (w/v), whereas wild-type W. coagulans could not grow in 3.5% NaCl. The salt resistance of B. subtilis was also increased by overexpression of B. velezensis opuA, opuB, opuD, or opuE. These results indicate that the salt-susceptibility of W. coagulans arises because it is deficient in Opu systems.

6.
BMC Vet Res ; 20(1): 287, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961400

ABSTRACT

BACKGROUND: Equine herpesvirus 4 (EHV-4) causes respiratory disease in horses, and the virus is considered endemic in the global equine population. However, outbreaks can occur when several horses are gathered in relation to shows, competitions, breeding units and at hospitals. In the spring year 2022, an EHV-4 outbreak occurred at the Large Animal Teaching Hospital, University of Copenhagen, Denmark. Nine horses were tested EHV-4 positive during the outbreak, which lasted approx. seven weeks. In addition, a tenth horse "Eq10" tested EHV-4 positive almost three weeks after the last of the outbreak horses tested positive. Detailed clinical registrations were obtained from all ten horses as well as their location and movement during hospitalization. Nasal swabs were obtained throughout the outbreak and tested by qPCR for EHV-4. Additionally, pre- and post-infection sera were tested for the presence of EHV-4 antibodies. Selected samples were characterized by partial and full genome sequencing. RESULTS: The most common clinical signs of the EHV-4 infected horses during this outbreak were pyrexia, nasal discharge, mandibular lymphadenopathy and increased lung sounds upon auscultation. Based on the locations of the horses, EHV-4 detection and antibody responses the most likely "patient zero" was identified as being "Eq1". Partial genome sequencing revealed that Eq10 was infected by another wild type EHV-4 strain, suggesting that the hospital was able to eliminate the outbreak by testing and reinforcing biosecurity measures. The complete genome sequence of the outbreak strain was obtained and revealed a closer relation to Australian and Japanese EHV-4 strains rather than to other European EHV-4 strains, however, very limited sequence data are available from Europe. CONCLUSION: The study illustrated the transmission of EHV-4 within an equine facility/hospital and provided new insights into the viral shedding, antibody responses and clinical signs related to EHV-4 infections. Finally, sequencing proved a useful tool in understanding the transmission within the hospital, and in characterizing of the outbreak strain.


Subject(s)
Disease Outbreaks , Herpesviridae Infections , Herpesvirus 4, Equid , Horse Diseases , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Disease Outbreaks/veterinary , Denmark/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 4, Equid/isolation & purification , Male , Female , Antibodies, Viral/blood , Hospitals, Animal
7.
J Agric Food Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962874

ABSTRACT

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.

8.
Infection ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963607

ABSTRACT

PURPOSE: To characterize the clinical relevance of S. saccharolyticus and to identify criteria to distinguish between infection and contamination. METHODS: We retrospectively investigated clinical features of patients with S. saccharolyticus detection between June 2009 and July 2021. Based on six criteria, infection was considered likely for patients with a score from 3 to 6 points, infection was considered unlikely for patients with a score from 0 to 2 points. We performed group comparison and logistic regression to identify factors than are associated with likely infection. In addition, whole genome sequencing (WGS) of 22 isolates was performed. RESULTS: Of 93 patients in total, 44 were assigned to the group "infection likely" and 49 to the group "infection unlikely". Multiple regression analysis revealed "maximum body temperature during hospital stay" to have the strongest predictive effect on likely infection (adjusted odds ratio 4.40, 95% confidence interval 2.07-9.23). WGS revealed two different clades. Compared to isolates from clade A, isolates from clade B were more frequently associated with implanted medical devices (3/10 vs. 9/12, p = 0.046) and a shorter time to positivity (TTP) (4.5 vs. 3, p = 0.016). Both clades did neither differ significantly in terms of causing a likely infection (clade A 7/10 vs. clade B 5/12, p = 0.23) nor in median length of hospital stay (28 vs. 15.5 days, p = 0.083) and length of stay at the ICU (21 vs. 3.5 days, p = 0.14). CONCLUSION: These findings indicate that S. saccharolyticus can cause clinically relevant infections. Differentiation between infection and contamination remains challenging.

9.
J Clin Neurol ; 20(4): 439-449, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951977

ABSTRACT

BACKGROUND AND PURPOSE: Migraine is a condition that is often observed to run in families, but its complex genetic background remains unclear. This study aimed to identify the genetic factors influencing migraines and their potential association with the family medical history. METHODS: We performed a comprehensive genome-wide association study of a cohort of 1,561 outpatients with migraine and 473 individuals without migraine in Taiwan, including Han Chinese individuals with or without a family history of migraine. By analyzing the detailed headache history of the patients and their relatives we aimed to isolate potential genetic markers associated with migraine while considering factors such as sex, episodic vs. chronic migraine, and the presence of aura. RESULTS: We revealed novel genetic risk loci, including rs2287637 in DEAD-Box helicase 1 and long intergenic non-protein coding RNA 1804 and rs12055943 in engulfment and cell motility 1, that were correlated with the family history of migraine. We also found a genetic location downstream of mesoderm posterior BHLH transcription factor 2 associated with episodic migraine, whereas loci within the ubiquitin-specific peptidase 26 exonic region, dual specificity phosphatase 9 and pregnancy-upregulated non-ubiquitous CaM kinase intergenic regions, and poly (ADP-ribose) polymerase 1 and STUM were linked to chronic migraine. We additionally identified genetic regionsassociated with the presence or absence of aura. A locus between LINC02561 and urocortin 3 was predominantly observed in female patients. Moreover, three different single-nucleotide polymorphisms were associated with the family history of migraine in the control group. CONCLUSIONS: This study has identified new genetic locations associated with migraine and its family history in a Han Chinese population, reinforcing the genetic background of migraine. The findings point to potential candidate genes that should be investigated further.

10.
Sci Rep ; 14(1): 15145, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956134

ABSTRACT

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Subject(s)
Conserved Sequence , Genome, Viral , Hepacivirus , Nucleic Acid Conformation , RNA, Viral , Hepacivirus/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Humans , Sequence Alignment , Hepatitis C/virology , Hepatitis C/genetics
11.
Sci Rep ; 14(1): 15216, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956138

ABSTRACT

Here, we present the whole genome sequence of Bt S2160-1, a potential alternative to the mosquitocidal model strain, Bti. One chromosome genome and four mega-plasmids were contained in Bt S2160-1, and 13 predicted genes encoding predicted insecticidal crystal proteins were identified clustered on one plasmid pS2160-1p2 containing two pathogenic islands (PAIs) designed as PAI-1 (Cry54Ba, Cry30Ea4, Cry69Aa-like, Cry50Ba2-like, Cry4Ca1-like, Cry30Ga2, Cry71Aa-like, Cry72Aa-like, Cry70Aa-like, Cyt1Da2-like and Vpb4C1-like) and PAI-2 (Cyt1Aa-like, and Tpp80Aa1-like). The clusters appear to represent mosquitocidal toxin islands similar to pathogenicity islands. Transcription/translation of 10 of the 13 predicted genes was confirmed by whole-proteome analysis using LTQ-Orbitrap LC-MS/MS. In summary, the present study identified the existence of a mosquitocidal toxin island in Bacillus thuringiensis, and provides important genomic information for understanding the insecticidal mechanism of B. thuringiensis.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Insecticides , Proteomics , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticides/pharmacology , Whole Genome Sequencing/methods , Genome, Bacterial , Endotoxins/genetics , Bacillus thuringiensis Toxins , Genomic Islands , Proteome , Plasmids/genetics , Tandem Mass Spectrometry , Animals , Hemolysin Proteins/genetics
12.
Article in English | MEDLINE | ID: mdl-38967708

ABSTRACT

This paper critiques the restrictive criteria for germline genome editing recently proposed by Chin, Nguma, and Ahmad in this journal. While praising the authors for resisting fervent calls for an outright ban on clinical applications of the technology, this paper argues that their approach is nevertheless unduly restrictive, and may thus hinder technological progress. This response advocates for weighing potential benefits against risks without succumbing to excessive caution, proposing that ethical oversight combined with genetic scrutiny at the embryo stage post-editing can enable responsible use of the technology, ultimately reducing the burden of genetic diseases and enhancing human health, akin to how IVF transformed reproductive medicine despite strong initial opposition.

13.
Arch Microbiol ; 206(8): 342, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967823

ABSTRACT

A novel mangrove soil-derived actinomycete, strain S2-29T, was found to be most closely related to Saccharopolyspora karakumensis 5K548T based on 16 S rRNA sequence (99.24% similarity) and genomic phylogenetic analyses. However, significant divergence in digital DNA-DNA hybridization, average nucleotide identity, and unique biosynthetic gene cluster possession distinguished S2-29T as a distinct Saccharopolyspora species. Pan genome evaluation revealed exceptional genomic flexibility in genus Saccharopolyspora, with > 95% accessory genome content. Strain S2-29T harbored 718 unique genes, largely implicated in energetic metabolisms, indicating different metabolic capacities from its close relatives. Several uncharacterized biosynthetic gene clusters in strain S2-29T highlighted the strain's untapped capacity to produce novel functional compounds with potential biotechnological applications. Designation as novel species Saccharopolyspora mangrovi sp. nov. (type strain S2-29T = JCM 34,548T = CGMCC 4.7716T) was warranted, expanding the known Saccharopolyspora diversity and ecology. The discovery of this mangrove-adapted strain advances understanding of the genus while highlighting an untapped source of chemical diversity.


Subject(s)
DNA, Bacterial , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Saccharopolyspora , Soil Microbiology , Saccharopolyspora/genetics , Saccharopolyspora/metabolism , Saccharopolyspora/classification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Multigene Family , Genomics , Sequence Analysis, DNA , Wetlands , Nucleic Acid Hybridization , Bacterial Typing Techniques
14.
Methods Mol Biol ; 2833: 121-128, 2024.
Article in English | MEDLINE | ID: mdl-38949706

ABSTRACT

Going back in time through a phylogenetic tree makes it possible to evaluate ancestral genomes and assess their potential to acquire key polymorphisms of interest over evolutionary time. Knowledge of this kind may allow for the emergence of key traits to be predicted and pre-empted from currently circulating strains in the future. Here, we present a novel genome-wide survival analysis and use the emergence of drug resistance in Mycobacterium tuberculosis as an example to demonstrate the potential and utility of the technique.


Subject(s)
Mycobacterium tuberculosis , Phylogeny , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Genome, Bacterial , Humans , Evolution, Molecular , Drug Resistance, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/genetics
15.
Methods Mol Biol ; 2833: 161-183, 2024.
Article in English | MEDLINE | ID: mdl-38949710

ABSTRACT

Outbreaks are a risk to public health particularly when pathogenic, hypervirulent, and/or multidrug-resistant organisms (MDROs) are involved. In a hospital setting, vulnerable populations such as the immunosuppressed, intensive care patients, and neonates are most at risk. Rapid and accurate outbreak detection is essential to implement effective interventions in clinical areas to control and stop further transmission. Advances in the field of whole genome sequencing (WGS) have resulted in lowered costs, increased capacity, and improved reproducibility of results. WGS now has the potential to revolutionize the investigation and management of outbreaks replacing conventional genotyping and other discrimination systems. Here, we outline specific procedures and protocols to implement WGS into investigation of outbreaks in healthcare settings.


Subject(s)
Disease Outbreaks , Genomics , Whole Genome Sequencing , Humans , Whole Genome Sequencing/methods , Genomics/methods , Genome, Bacterial
16.
Methods Mol Biol ; 2833: 185-193, 2024.
Article in English | MEDLINE | ID: mdl-38949711

ABSTRACT

Whole genome sequencing (WGS) is becoming an important diagnostic tool for antimicrobial susceptibility testing of Mycobacterium tuberculosis complex (MTBC) isolates in many countries. WGS protocols usually start with the preparation of a DNA-library: the critical first step in the process. A DNA-library represents the genomic content of a DNA sample and consists of unique short DNA fragments. Although available DNA-library protocols come with manufacturer instructions, details of the entire process, including quality controls, instrument parameters, and run evaluations, often need to be developed and customized by each laboratory to implement WGS technology effectively. Here, we provide a detailed workflow for a DNA-library preparation based on an adapted Illumina protocol optimized for the reduction of reagent costs.


Subject(s)
Genome, Bacterial , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Whole Genome Sequencing/methods , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Gene Library , DNA, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/diagnosis , High-Throughput Nucleotide Sequencing/methods
17.
Front Genet ; 15: 1437522, 2024.
Article in English | MEDLINE | ID: mdl-38948359
18.
J Med Virol ; 96(7): e29752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949191

ABSTRACT

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Subject(s)
COVID-19 , Mitochondria , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mitochondria/metabolism , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , A549 Cells , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Transcriptome , Open Reading Frames , Viral Proteins/genetics , Viral Proteins/metabolism , Viroporin Proteins
19.
Microbiol Spectr ; : e0000324, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949306

ABSTRACT

The use of surrogate organisms can enable researchers to safely conduct research on pathogens and in a broader set of conditions. Being able to differentiate between the surrogates used in the experiments and background contamination as well as between different experiments will further improve research efforts. One effective approach is to introduce unique genetic barcodes into the surrogate genome and track their presence using the quantitative polymerase chain reaction (qPCR). In this report, we utilized the CRISPR-Cas9 methodology, which employs a single plasmid and a transformation step to insert five distinct barcodes into Bacillus thuringiensis, a well-established surrogate for Bacillus anthracis when Risk Group 1 organisms are needed. We subsequently developed qPCR assays for barcode detection and successfully demonstrated the stability of the barcodes within the genome through five cycles of sporulation and germination. Additionally, we conducted whole-genome sequencing on these modified strains and analyzed 187 potential Cas9 off-target sites. We found no correlation between the mutations observed in the engineered strains and the predicted off-target sites, suggesting this genome engineering strategy did not directly result in off-target mutations in the genome. This simple approach has the potential to streamline the creation of barcoded B. thuringiensis strains for use in future studies on surrogate genomes. IMPORTANCE: The use of Bacillus anthracis as a biothreat agent poses significant challenges for public health and national security. Bacillus anthracis surrogates, like Bacillus thuringiensis, are invaluable tools for safely understanding Bacillus anthracis properties without the safety concerns that would arise from using a virulent strain of Bacillus anthracis. We report a simple method for barcode insertion into Bacillus thuringiensis using the CRISPR-Cas9 methodology and subsequent tracking by quantitative polymerase chain reaction (qPCR). Moreover, whole-genome sequencing data and CRISPR-Cas9 off-target analyses in Bacillus thuringiensis suggest that this gene-editing method did not directly cause unwanted mutations in the genome. This study should assist in the facile development of barcoded Bacillus thuringiensis surrogate strains, among other biotechnological applications in Bacillus species.

20.
Comput Struct Biotechnol J ; 23: 2478-2486, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952424

ABSTRACT

Gene expression plays a pivotal role in various diseases, contributing significantly to their mechanisms. Most GWAS risk loci are in non-coding regions, potentially affecting disease risk by altering gene expression in specific tissues. This expression is notably tissue-specific, with genetic variants substantially influencing it. However, accurately detecting the expression Quantitative Trait Loci (eQTL) is challenging due to limited heritability in gene expression, extensive linkage disequilibrium (LD), and multiple causal variants. The single variant association approach in eQTL analysis is limited by its susceptibility to capture the combined effects of multiple variants, and a bias towards common variants, underscoring the need for a more robust method to accurately identify causal eQTL variants. To address this, we developed an algorithm, CausalEQTL, which integrates L 0 +L 1 penalized regression with an ensemble approach to localize eQTL, thereby enhancing prediction performance precisely. Our results demonstrate that CausalEQTL outperforms traditional models, including LASSO, Elastic Net, Ridge, in terms of power and overall performance. Furthermore, analysis of heart tissue data from the GTEx project revealed that eQTL sites identified by our algorithm provide deeper insights into heart-related tissue eQTL detection. This advancement in eQTL mapping promises to improve our understanding of the genetic basis of tissue-specific gene expression and its implications in disease. The source code and identified causal eQTLs for CausalEQTL are available on GitHub: https://github.com/zhc-moushang/CausalEQTL.

SELECTION OF CITATIONS
SEARCH DETAIL
...