Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Microb Pathog ; : 106867, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168357

ABSTRACT

Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100% inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 µL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06% guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100%, 85%, 40%, and 35% similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.

2.
Biomedica ; 44(2): 258-276, 2024 05 30.
Article in English, Spanish | MEDLINE | ID: mdl-39088536

ABSTRACT

In Salmonella enterica serovar Typhimurium (Typhimurium), multidrug resistance is associated with integrons carrying resistance genes dispersed by mobile genetic elements. This exploratory systematic review sought to identify integron types and their resistance genes in multidrug resistance Typhimurium isolates. We used Medline, PubMed, SciELO, ScienceDirect, Redalyc, and Google Scholar as motor searchers for articles in Spanish or English published between 2012 and 2020, including the keywords "integrons", "antibiotic resistance", and "Salmonella Typhimurium". We included 38 articles reporting multidrug resistance up to five antibiotic families. Class 1 integrons with aadA2 and blaPSE-1 gene cassettes were predominant, some probably related to the Salmonella genomic island 1. We did not find studies detailing class 1 and 2 integrons in the same isolate, nor class 3 integrons reported. The presence of integrons largely explains the resistance profiles found in isolates from different sources in 15 countries.


La multirresistencia a los antibióticos en Salmonella enterica serovar Typhimurium (Typhimurium) se asocia con integrones que portan genes de resistencia y que son dispersados por elementos genéticos móviles. En esta revisión sistemática exploratoria, se buscó identificar los tipos de integrones y sus genes de resistencia en aislamientos de Typhimurium multirresistentes a antibióticos. Se realizó una búsqueda de artículos en Medline, PubMed, SciELO, ScienceDirect, Redalyc y Google Académico, publicados entre el 2012 y el 2020, en español o inglés, con las palabras claves: "integrons", "antibiotic resistance" y "Salmonella Typhimurium". En el análisis se incluyeron 38 artículos que reportaron multirresistencia a cinco familias de antibióticos. Los integrones de clase 1 con casetes de genes aadA2 y blaPSE-1 fueron los predominantes, algunos probablemente relacionados con la isla genómica de Salmonella 1. No se encontraron integrones de clase 1 y 2 en un mismo aislamiento, ni se reportaron integrones de clase 3. La presencia de integrones explica en gran medida los perfiles de resistencia encontrados en aislamientos de diferentes fuentes de 15 países.


Subject(s)
Drug Resistance, Multiple, Bacterial , Integrons , Salmonella typhimurium , Integrons/genetics , Drug Resistance, Multiple, Bacterial/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Genomic Islands , Animals
3.
Access Microbiol ; 6(6)2024.
Article in English | MEDLINE | ID: mdl-39045253

ABSTRACT

Objectives. Staphylococcus aureus is one of the most common pathogens attributed to hospital infections. Although S. aureus infections have been well studied in developed countries, far less is known about the biology of the pathogen in sub-Saharan Africa. Methods. Here, we report on the isolation, antibiotic resistance profiling, whole genome sequencing, and genome comparison of six multi-drug resistant isolates of S. aureus obtained from a referral hospital in Kakamega, Western Kenya. Results. Five of the six isolates contained a 20.7 kb circular plasmid carrying blaZ (associated with resistance to ß-lactam antibiotics). These five strains all belonged to the same sequence type, ST152. Despite the similarity of the plasmid in these isolates, whole genome sequencing revealed that the strains differed, depending on whether they were associated with hospital-acquired or community-acquired infections. Conclusion. The intriguing finding is that the hospital-acquired and the community-acquired isolates of S. aureus belonging to the same genotype, ST152, formed two separate sub-clusters in the phylogenetic tree and differed by the repertoire of accessory virulence genes. These data suggest ongoing adaptive evolution and significant genomic plasticity.

4.
Microbiol Resour Announc ; 13(8): e0023924, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38953337

ABSTRACT

The bacterium Brochothrix thermosphacta is a known muscle food spoiler. Here, the complete genome sequence of the B. thermosphacta type strain, DSM 20171, is reported. Prediction of prophages and genomic islands reveals an unsuspected diversity in this bacterial species that deserves further investigation.

5.
Mol Ecol ; 33(12): e17365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733214

ABSTRACT

When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population , Passeriformes , Selection, Genetic , Animals , Passeriformes/genetics , Islands , Genetic Drift , Genetic Speciation , Adaptation, Physiological/genetics , Genomics
6.
J Biotechnol ; 388: 49-58, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38641137

ABSTRACT

Mobilization of clusters of genes called genomic islands (GIs) across bacterial lineages facilitates dissemination of traits, such as, resistance against antibiotics, virulence or hypervirulence, and versatile metabolic capabilities. Robust delineation of GIs is critical to understanding bacterial evolution that has a vast impact on different life forms. Methods for identification of GIs exploit different evolutionary features or signals encoded within the genomes of bacteria, however, the current state-of-the-art in GI detection still leaves much to be desired. Here, we have taken a combinatorial approach that accounted for GI specific features such as compositional bias, aberrant phyletic pattern, and marker gene enrichment within an integrative framework to delineate GIs in bacterial genomes. Our GI prediction tool, DICEP, was assessed on simulated genomes and well-characterized bacterial genomes. DICEP compared favorably with current GI detection tools on real and synthetic datasets.


Subject(s)
Genome, Bacterial , Genomic Islands , Genomic Islands/genetics , Genome, Bacterial/genetics , Bacteria/genetics , Genomics/methods , Phylogeny , Software , Computational Biology/methods
7.
BMC Genomics ; 25(1): 263, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459466

ABSTRACT

BACKGROUND: Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS: WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS: This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS: The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.


Subject(s)
Drinking Water , Escherichia coli , Humans , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Virulence Factors/genetics , Phylogeny , Ecosystem , Drug Resistance, Microbial/genetics
8.
Mol Ecol ; 33(8): e17317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488670

ABSTRACT

Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.


Subject(s)
Genetics, Population , Transcriptome , Transcriptome/genetics , Genome-Wide Association Study , Genome , Genomics , Gene Flow , Genetic Speciation , Hybridization, Genetic , Reproductive Isolation
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365254

ABSTRACT

The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.


Subject(s)
Methylophilaceae , Genome, Bacterial , Genomic Islands , Phylogeny , Lakes
10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38225175

ABSTRACT

Speciation in the face of gene flow is usually associated with a heterogeneous genomic landscape of divergence in nascent species pairs. However, multiple factors, such as divergent selection and local recombination rate variation, can influence the formation of these genomic islands. Examination of the genomic landscapes of species pairs that are still in the early stages of speciation provides an insight into this conundrum. In this study, population genomic analyses were undertaken using a wide range of sampling and whole-genome resequencing data from 96 unrelated individuals of Kentish plover (Charadrius alexandrinus) and white-faced plover (Charadrius dealbatus). We suggest that the two species exhibit varying levels of population admixture along the Chinese coast and on the Taiwan Island. Genome-wide analyses for introgression indicate that ancient introgression had occurred in Taiwan population, and gene flow is still ongoing in mainland coastal populations. Furthermore, we identified a few genomic regions with significant levels of interspecific differentiation and local recombination suppression, which contain several genes potentially associated with disease resistance, coloration, and regulation of plumage molting and thus may be relevant to the phenotypic and ecological divergence of the two nascent species. Overall, our findings suggest that divergent selection in low recombination regions may be a main force in shaping the genomic islands in two incipient shorebird species.


Subject(s)
Genome-Wide Association Study , Genomic Islands , Humans , Genetic Speciation , Genome , Gene Flow , Recombination, Genetic , Selection, Genetic
11.
Antibiotics (Basel) ; 12(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887250

ABSTRACT

Nosocomial outbreaks of multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) are often reported worldwide, mostly associated with a small number of multilocus-sequence types of E. hormaechei and E. cloacae strains. In Europe, the largest clonal outbreak of blaNDM-1-producing ECC has been recently reported, involving an ST182 E. hormaechei strain in a Greek teaching hospital. In the current study, we aimed to further investigate the genetic make-up of two representative outbreak isolates. Comparative genomics of whole genome sequences (WGS) was performed, including whole genome-based taxonomic analysis and in silico prediction of virulence determinants of the bacterial cell surface, plasmids, antibiotic resistance genes and virulence factors present on genomic islands. The enterobacterial common antigen and the colanic antigen of the cell surface were identified in both isolates, being similar to the gene clusters of the E. hormaechei ATCC 49162 and E. cloacae ATCC 13047 type strains, whereas the two strains possessed different gene clusters encoding lipopolysaccharide O-antigens. Other virulence factors of the bacterial cell surface, such as flagella, fimbriae and pili, were also predicted to be encoded by gene clusters similar to those found in Enterobacter spp. and other Enterobacterales. Secretion systems and toxin-antitoxin systems, which also contribute to pathogenicity, were identified. Both isolates harboured resistance genes to multiple antimicrobial classes, including ß-lactams, aminoglycosides, quinolones, chloramphenicol, trimethoprim, sulfonamides and fosfomycin; they carried blaTEM-1, blaOXA-1, blaNDM-1, and one of them also carried blaCTXM-14, blaCTXM-15 and blaLAP-2 plasmidic alleles. Our comprehensive analysis of the WGS assemblies revealed that blaNDM-1-producing outbreak isolates possess components of the bacterial cell surface as well as genomic islands, harbouring resistance genes to several antimicrobial classes and various virulence factors. Differences in the plasmids carrying ß-lactamase genes between the two strains have also shown diverse modes of acquisition and an ongoing evolution of these mobile elements.

12.
Zool Res ; 44(6): 1052-1063, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37872006

ABSTRACT

Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima's D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the "genomic islands of speciation", we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.


Subject(s)
Environment , Murinae , Rats , Animals , Phylogeny , Murinae/genetics , China , Genomics
13.
Microbiol Spectr ; : e0039923, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707451

ABSTRACT

Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.

14.
Mol Ecol ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695544

ABSTRACT

Local adaptation is facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. The mechanisms that create and maintain these islands and how they contribute to adaptive divergence is an active research topic. Here, we use sockeye salmon as a model to investigate both the mechanisms responsible for creating islands of divergence and the patterns of differentiation at these islands. Previous research suggested that multiple islands contributed to adaptive radiation of sockeye salmon. However, the low-density genomic methods used by these studies made it difficult to fully elucidate the mechanisms responsible for islands and connect genotypes to adaptive variation. We used whole genome resequencing to genotype millions of loci to investigate patterns of genetic variation at islands and the mechanisms that potentially created them. We discovered 64 islands, including 16 clustered in four genomic regions shared between two isolated populations. Characterisation of these four regions suggested that three were likely created by structural variation, while one was created by processes not involving structural variation. All four regions were small (< 600 kb), suggesting low recombination regions do not have to span megabases to be important for adaptive divergence. Differentiation at islands was not consistently associated with established population attributes. In sum, the landscape of adaptive divergence and the mechanisms that create it are complex; this complexity likely helps to facilitate fine-scale local adaptation unique to each population.

15.
Microbiol Spectr ; : e0134223, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712674

ABSTRACT

Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.

16.
Microorganisms ; 11(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37512819

ABSTRACT

Streptococcus pneumoniae is an important human pathogen causing both mild and severe diseases. In this work, we determined the complete genome sequence of the S. pneumoniae clinical isolate BM6001, which is the original host of the ICE Tn5253. The BM6001 genome is organized in one circular chromosome of 2,293,748 base pairs (bp) in length, with an average GC content of 39.54%; the genome harbors a type 19F capsule locus, two tandem copies of pspC, the comC1-comD1 alleles and the type I restriction modification system SpnIII. The BM6001 mobilome accounts for 15.54% (356,521 bp) of the whole genome and includes (i) the ICE Tn5253 composite; (ii) the novel IME Tn7089; (iii) the novel transposon Tn7090; (iv) 3 prophages and 2 satellite prophages; (v) 5 genomic islands (GIs); (vi) 72 insertion sequences (ISs); (vii) 69 RUPs; (viii) 153 BOX elements; and (ix) 31 SPRITEs. All MGEs, except for the GIs, produce excised circular forms and attB site restoration. Tn7089 is 9089 bp long and contains 11 ORFs, of which 6 were annotated and code for three functions: integration/excision, mobilization and adaptation. Tn7090 is 9053 bp in size, flanked by two copies of ISSpn7, and contains seven ORFs organized as a single transcriptional unit, with genes encoding for proteins likely involved in the uptake and binding of Mg2+ cations in the adhesion to host cells and intracellular survival. BM6001 GIs, except for GI-BM6001.4, are variants of the pneumococcal TIGR4 RD5 region of diversity, pathogenicity island PPI1, R6 Cluster 4 and PTS island. Overall, prophages and satellite prophages contain genes predicted to encode proteins involved in DNA replication and lysogeny, in addition to genes encoding phage structural proteins and lytic enzymes carried only by prophages. ΦBM6001.3 has a mosaic structure that shares sequences with prophages IPP69 and MM1 and disrupts the competent comGC/cglC gene after chromosomal integration. Treatment with mitomycin C results in a 10-fold increase in the frequency of ΦBM6001.3 excised forms and comGC/cglC coding sequence restoration but does not restore competence for genetic transformation. In addition, phylogenetic analysis showed that BM6001 clusters in a small lineage with five other historical strains, but it is distantly related to the lineage due to its unique mobilome, suggesting that BM6001 has progressively accumulated many MGEs while losing competence for genetic transformation.

17.
Mar Drugs ; 21(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37233503

ABSTRACT

Sulfitobacter is one of the major sulfite-oxidizing alphaproteobacterial groups and is often associated with marine algae and corals. Their association with the eukaryotic host cell may have important ecological contexts due to their complex lifestyle and metabolism. However, the role of Sulfitobacter in cold-water corals remains largely unexplored. In this study, we explored the metabolism and mobile genetic elements (MGEs) in two closely related Sulfitobacter faviae strains isolated from cold-water black corals at a depth of ~1000 m by comparative genomic analysis. The two strains shared high sequence similarity in chromosomes, including two megaplasmids and two prophages, while both contained several distinct MGEs, including prophages and megaplasmids. Additionally, several toxin-antitoxin systems and other types of antiphage elements were also identified in both strains, potentially helping Sulfitobacter faviae overcome the threat of diverse lytic phages. Furthermore, the two strains shared similar secondary metabolite biosynthetic gene clusters and genes involved in dimethylsulfoniopropionate (DMSP) degradation pathways. Our results provide insight into the adaptive strategy of Sulfitobacter strains to thrive in ecological niches such as cold-water corals at the genomic level.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Anthozoa/microbiology , Ecosystem , Genomics , Water , Phylogeny
18.
Evol Lett ; 7(2): 99-111, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37033875

ABSTRACT

Speciation is fundamental for building and maintaining biodiversity. The formation of the highly differentiated genomic regions between diverging taxa has been interpreted as a result of divergence with gene flow, linked selection, and reduction in recombination. It is challenging to unravel these nonexclusive processes in shaping genomic divergence. Here, we investigate the relative roles of these processes in shaping genomic differentiation in a montane bird, the Green-backed Tit (Parus monticolus). Our genetic structure and demographic analyses identify that four genetic lineages diverge between 838 and 113 thousand years ago and there is evidence of secondary gene flow. The highly divergent genomic regions do not increase with the divergence time, as we found that the old lineages show relatively fewer numbers and smaller sizes of highly differentiated regions than the young divergent lineages (numbers, 118-138 vs. 156-289; sizes, 5.9-6.9 vs. 7.8-14.5 megabase). Across the genome, the outlier windows show a reduction in nucleotide diversity, absolute genetic divergence, and recombination rate, suggesting recurrent selection in regions with low recombination being the major driver of genomic divergence. Finally, we show that secondary gene flow tends to affect the highly differentiated genomic regions if these regions are less likely to be the targets of selection. Altogether, our study shows how common ancestry, recurrent selection, low recombination rate, and gene flow have contributed to the emergence of genomic islands at different stages of speciation.

19.
Plant Commun ; 4(5): 100599, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37050879

ABSTRACT

Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.


Subject(s)
Genomics , Plants , Plants/genetics , Genome, Plant/genetics , Reproductive Isolation , Hybridization, Genetic
20.
Pathogens ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986424

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(6')-aph(2″) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates.

SELECTION OF CITATIONS
SEARCH DETAIL