Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Microorganisms ; 11(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894206

ABSTRACT

Integrons are genetic elements that store, express and exchange gene cassettes. These elements are characterized by containing a gene that codes for an integrase (intI), a cassette integration site (attI) and a variable region holding the cassettes. Using bioinformatics and molecular biology methods, a functional integron found in Aeromonas sp. 3925, a strain isolated from diarrheal stools, is described. To confirm the integron class, a phylogenetic analysis with amino acid sequences was conducted. The integrase was associated to class 4 integrases; however, it is clearly different from them. Thus, we classified the associated element as a class 4-like integron. We found that the integrase activity is not under the control of the SOS or catabolic repression, since the expression was not increased in the presence of mitomycin or arabinose. The class-4-like integron is located on the chromosome and contains two well-defined gene cassettes: aadA1 that confers resistance to streptomycin and lpt coding for a lipoprotein. It also includes eight Open Reading frames (ORFs) with unknown functions. The strain was characterized through a Multilocus Phylogenetic Analyses (MLPA) of the gyrB, gyrA, rpoD, recA, dnaJ and dnaX genes. The phylogenetic results grouped it into a different clade from the species already reported, making it impossible to assign a species. We resorted to undertaking complete genome sequencing and a phylogenomic analysis. Aeromonas sp. 3925 is related to A. media and A. rivipollensis clusters, but it is clearly different from these species. In silico DNA-DNA hybridization (isDDH) and Average Nucleotide Identity (ANI) analyses suggested that this isolate belongs to the genomospecies paramedia. This paper describes the first class 4-like integron in Aeromonas and contributes to the establishment of genomospecies paramedia.

2.
Vet Res ; 54(1): 33, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37020296

ABSTRACT

Actinobacillus equuli is mostly associated with disease in horses and is most widely known as the causative agent of sleepy foal disease. Even though existing phenotypic tools such as biochemical tests, 16S rRNA gene sequencing, and Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) can be used to identify members of the Actinobacillus genus, these methods struggle to differentiate between certain species and do not allow strain, virulence, and antimicrobial susceptibility typing. Hence, we performed in-depth analysis of 24 equine Actinobacillus isolates using phenotypic identification and susceptibility testing on the one hand, and long-read nanopore whole genome sequencing on the other hand. This allowed to address strain divergence down to the whole genome single nucleotide polymorphism (SNP) level. While lowest resolution was observed for 16S rRNA gene classification, a new multi-locus sequence typing (MLST) scheme allowed proper classification up to the species level. Nevertheless, a SNP-level analysis was required to distinguish A. equuli subspecies equuli and haemolyticus. Our data provided first WGS data on Actinobacillus genomospecies 1, Actinobacillus genomospecies 2, and A. arthritidis, which allowed the identification of a new Actinobacillus genomospecies 1 field isolate. Also, in-depth characterization of RTX virulence genes provided information on the distribution, completeness, and potential complementary nature of the RTX gene operons within the Actinobacillus genus. Even though overall low prevalence of acquired resistance was observed, two plasmids were identified conferring resistance to penicillin-ampicillin-amoxicillin and chloramphenicol in one A. equuli strain. In conclusion our data delivered new insights in the use of long-read WGS in high resolution identification, virulence gene typing, and antimicrobial resistance (AMR) of equine Actinobacillus species.


Subject(s)
Actinobacillus , Animals , Horses , Actinobacillus/genetics , Anti-Bacterial Agents , Multilocus Sequence Typing/veterinary , RNA, Ribosomal, 16S/genetics , Virulence , Drug Resistance, Bacterial , Whole Genome Sequencing/veterinary
3.
Res Microbiol ; 174(4): 104027, 2023 May.
Article in English | MEDLINE | ID: mdl-36646262

ABSTRACT

A moderately thermophilic, gram-positive genomospecies Anoxybacillus rupiensis TPH1 was isolated from Tatapani hot spring, Chhattisgarh, India. Genome of 3.70 Mb with 42.3% GC subsumed 4131 CDSs, 65 tRNA, 5 rRNA, 35 AMR and 19 drug target genes. Further, comparative genomics of 19 Anoxybacillus spp. exhibited an open pan genome of 13102 genes along with core (10.62%), unique (43.5%) and accessory (45.9%) genes. Moreover, phylogenomic tree displayed clustering of Anoxybacillus spp. into two distinct clades where clade A species harbored larger genomes, more unique genes, CDS and hypothetical proteins than clade B species. Further, distribution of azoreductases showed FMN-binding NADPH azoreductase (AzoRed1) presence in clade A species only and FMN-binding NADH azoreductase (AzoRed2) harboring by species of both clades. Heavy metal resistance genes distribution showed omnipresence of znuA, copZ and arsC in both clades, dispersed presence of cbiM, czcD, merA and feoB over both clades and harboring of nikA and acr3 by few species of clade A only. Additionally, molecular docking of AzoRed1, AzoRed2, ZnuA, CopZ, Acr3, CbiM, CzcD, MerA and NikA with their respective ligands indicated high affinity and stable binding. Conclusively, present study provided insight into gene repertoire of genus Anoxybacillus and a basis for the potential application of this thermophile in bioremediation of azo dyes and heavy metals.


Subject(s)
Anoxybacillus , Hot Springs , Metals, Heavy , Anoxybacillus/genetics , Biodegradation, Environmental , Azo Compounds/metabolism , Molecular Docking Simulation , Metals, Heavy/metabolism , Phylogeny
4.
Front Cell Infect Microbiol ; 12: 1033431, 2022.
Article in English | MEDLINE | ID: mdl-36483454

ABSTRACT

Bacterial vaginosis is characterized as a polymicrobial dysbiosis with the loss of Lactobacillus spp. and growth of multiple anerobic bacteria, including Gardnerella, Prevotella and Atopobium ranked as the top three most abundant. A total of nine Gardnerella genomospecies have been identified, yet the association between their distribution or any exact Lactobacillus species with BV occurrence or prognosis remains controversial. A total of 308 patients and 62 healthy women who sought annual examinations were recruited, with 130 BV patients and 41 healthy women who met our inclusion criteria finally included. Vaginal samples were used for microscopic examination, 16S rRNA sequencing, bacterial culture and isolation. Isolates of Gardnerella vaginalis, Fannyhessae vaginae (used to be called Atopobium vaginae) and Lactobacillus iners were used for competition tests. We found that the relative abundances of Gardnerella, Prevotella and Atopobium were elevated in BV patients compared to healthy people (p<0.0001), yet no significant differences were found among patients with different clinical outcomes (p>0.05). Seven out of nine Gardnerella genomospecies were present in both BV patients and healthy women, and the relative abundances of all detected genomospecies were higher in BV patients (p<0.05). Cured patients possessed higher GS03 than intermediate and failed patients (p=0.005, 0.0337). L. iners was significantly higher in cured patients than in the other two groups (p=0.0021, p<0.0001), and its ability to inhibit the growth of G. vaginalis and F. vaginae was validated. In summary, seven Gardnerella genomospecies were detected in Chinese BV patients, but no association of its distribution and BV occurrence or prognosis was found. The relative abundance of L. iners was higher in cured patients, and its antimicrobial activity against G. vaginalis and F. vaginae was validated through in vitro inhibition experiment. L. iners could become a predictive indicator of clinical outcomes of BV patients, and its antimicrobial function might be beneficial to BV patients.


Subject(s)
Anti-Infective Agents , Vaginosis, Bacterial , Humans , Female , Gardnerella , Vaginosis, Bacterial/drug therapy , RNA, Ribosomal, 16S/genetics , Lactobacillus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Food Microbiol ; 106: 104039, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690454

ABSTRACT

Genus Leuconostoc consists of a diverse range of lactic acid bacteria (LAB) from dairy, food and environmental ecology. Even though the species of Leuconostoc are commercially significant, their taxonomy is largely based on old, low-resolution classical methods. Several taxonomic reclassifications in the past were inadequate for microbiologist and food industry professionals to demarcate any new strain of genus Leuconostoc. The current taxonomy of the genus is largely based on classical approaches, which are in utmost need of reinvestigation by whole genome-based approaches. In the present study, the taxono-phylogenomic analysis depicted sixteen species, including three novel genomospecies and several reshufflings across the species, namely, L. mesenteroides, L. pseudomesenteroides, L. gelidum and L. lactis. Genus-wide T3PKS, CAZymes, and vector plasmids supports its biotechnological potential. However, detection of the antibiotic resistance genes in such an important LAB genus raises concern over their utility in industry. Present, large-scale in-depth genome-based study can shed light on the genome dynamics of the member species, help to obtain a more robust taxonomy and elucidate its biotechnology importance.


Subject(s)
Lactobacillales , Leuconostoc , Biotechnology , Genomics , Leuconostoc/genetics , Phylogeny
6.
Arch Microbiol ; 204(7): 408, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727397

ABSTRACT

The genus Streptococcus, a member of family Streptococcaceae, is known for its wide range of industrial, clinical and human relevance. Among the species of genus Streptococcus two members, namely Streptococcus koreensis and Streptococcus ilei, were isolated from subgingival dental plaque and human small intestinal fluid, respectively. The 16S rRNA gene sequence similarity of the type strains of these members shows a similarity of 99.87%. In this study, we performed a systematic study to clarify the taxonomic assignment of these two species. Genome similarity assessment based on whole-genome sequence information such as average nucleotide identity using orthoANI and fastANI, digital DNA-DNA hybridization value between S. koreensis and S. ilei were 96.31, 96.60, 86.4 and 97.63, respectively. All these genome similarity values clearly exceeded the species delineation cutoffs. Phylogenetic assessment using 16S rRNA gene and whole-genome information using PhyloPhlAn, which uses around 400 conserved genes across bacterial phyla, provides additional evidence for these members forming a monophyletic clade in the phylogenetic tree. Pan genome analysis suggests a very large core genome (n = 1374) and the presence of no unique gene between the genomes of S. koreensis and S. ilei. Additionally, we found highly syntenic genomes of type strains of these two species. Based on these evidences, we propose S. ilei should be reclassified as a later heterotypic synonym of S. koreensis.


Subject(s)
Streptococcus , Bacterial Typing Techniques , DNA, Bacterial/genetics , Humans , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptococcus/genetics
7.
Phytopathology ; 112(6): 1208-1213, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34856816

ABSTRACT

Agrobacterium tumefaciens species complex contains a set of diverse bacterial strains, most of which are well known for their pathogenicity on agricultural plants causing crown gall diseases. Members of A. tumefaciens species complex are classified into several taxonomically distinct lineages called "genomospecies" (13 genomospecies until early 2021). Recently, two genomospecies, G19 (strains RnrT, Rew, and Rnw) and G20 (strains OT33T and R13) infecting Rosa sp. plants in Iran, were described based on biochemical and molecular-phylogenetic data. Whole genome sequence-based core-genome phylogeny followed by average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) calculations performed in this study suggested that genomospecies G19 and G20 could be described as two novel and standalone species. In the phylogenetic tree, these two new genomospecies were clustered separately from other genomospecies/species of A. tumefaciens species complex. Moreover, both ANI and dDDH indices between the G19/G20 strains and other Rhizobiaceae members are clearly below the accepted thresholds for prokaryotic species description. Hence, Agrobacterium burrii sp. nov. is proposed to encompass the G19 strains, with RnrT = CFBP 8705T = DSM 112541T as type strain. Agrobacterium shirazense sp. nov. is also proposed to include G20 strains, with OT33T = CFBP 8901T = DSM 112540T as type strain.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plant Tumors , Rosa , Agrobacterium/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Genomics , Nucleic Acid Hybridization , Phylogeny , Plant Diseases/microbiology , Plant Tumors/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Antimicrob Agents Chemother ; 65(7): e0242420, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33903106

ABSTRACT

Changes in Kluyvera taxonomy may clarify each species contribution for recruitment and dissemination of their relevant ß-lactamases. The CTX-M-2 subgroup is linked to Kluyvera ascorbata, KLUC to Kluyvera cryocrescens, and CTX-M-25 to Kluyvera georgiana. The CTX-M-8 subgroup can be linked to Kluyvera genomospecies 3 and CTX-M-9 to Kluyvera genomospecies 2. Kluyvera sichuanensis and Kluyvera genomospecies 1 harbor new subgroups. The CTX-M-1 subgroup has a direct counterpart in an isolate proposed as a new genomospecies 5.


Subject(s)
Kluyvera , Kluyvera/genetics , beta-Lactamases/genetics
9.
Gut Pathog ; 13(1): 3, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436056

ABSTRACT

The emerging intestinal pathogen Campylobacter concisus has been associated with prolonged diarrhoea and classic inflammatory bowel diseases (IBD) and was recently also linked with microscopic colitis (MC). Previous reports have observed a high genetic diversity within isolates from diarrhoeic and IBD patients and from healthy controls (HC), and division of isolates into two major genomospecies (GS1 and GS2). The aim of this study was to describe genetic diversity in 80 recently cultivated MC biopsy and faecal isolates of C. concisus by multi-locus sequence typing (MLST); and to compare the phylogenetic relatedness to 102 isolates from diarrhoeic and IBD patients and HCs by k-mer-based distance estimation. MLST revealed high genetic diversity in MC isolates with 72 novel sequence types. K-mer divided MC isolates into two distinct clusters (cluster 1 n = 21, cluster 2 n = 49), with a significantly higher prevalence of cluster 2 isolates in biopsies than in faeces, p = 0.009. K-mer divided the 182 isolates into two major phylogenetic clusters: cluster 1 (GS1 isolates) and cluster 2 (GS2 isolates), which further differentiated into three subgroups. Cluster 1 and the three cluster 2 subgroups were each distinctive in mean genome size and GC count. Isolates from all disease phenotypes were present in cluster 1 and cluster 2 subgroup 2 and 3, whereas cluster 2 subgroup 1 only contained isolates restricted to patients with ulcerative colitis (n = 10) and HC (n = 4).

10.
Access Microbiol ; 2(5): acmi000111, 2020.
Article in English | MEDLINE | ID: mdl-32974576

ABSTRACT

We identified and characterized a genome of the multi-drug-resistant Bacteroides genomospecies recovered from an invasive specimen from a hospitalized patient in Canada. The strain was resistant to penicillin, pipercillin-tazobactam, meropenem, clindaymycin and metronidazole. The strain harboured a plasmid containing the nimE gene, which has been shown to be associated with metronidazole resistance. The study highlights the importance of being vigilant in suspecting antimicrobial drug resistance when a patient is not improving on therapy.

11.
Scand J Gastroenterol ; 55(8): 924-930, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32667235

ABSTRACT

OBJECTIVES: Microscopic colitis (MC) is potentially induced by an inflammatory reaction to a luminal gut factor. The emerging pathogen Campylobacter concisus is associated with prolonged diarrhoea and subsequently increased risk of MC. We aimed to examine the prevalence of C. concisus in clinical samples from MC patients, analyse the subtypes collagenous colitis (CC) and lymphocytic colitis (LC), and characterise C. concisus isolates from MC patients by genomic sequencing. METHODS: Mucosal biopsies were collected by sigmoidoscopy in 55 MC patients (CC n = 34, LC n = 21). Saliva and faecal samples were also collected. A two-step cultivation method and PCR established C. concisus prevalence. Biopsy and faecal isolates were sequenced for genomic analysis. RESULTS: Cultivation revealed C. concisus in saliva 55/55, faeces 14/55 and biopsies 69/436, which was confirmed by PCR in faeces 28/55 and biopsies 215/430. Interestingly, biopsy prevalence was higher in CC patients than in LC patients both by cultivation (50/270 vs.19/166, p = .058) and by PCR (175/270 vs. 40/160, p < .0001). Long disease duration also affected biopsy prevalence both by cultivation 30/244 (<2 years) vs. 39/192 (>2 years) (p = .025) and by PCR 103/239 (<2 years) vs. 112/191 (>2 years) (p = .002). Genomic analysis on sixty biopsy and twenty faecal isolates revealed division into two clusters/genomospecies and a high presence of various, putative virulence genes (zot, exotoxin 9 and hcp). CONCLUSIONS: Campylobacter concisus was prevalent in MC patients. Interestingly, the biopsy prevalence differed in biopsies from CC and LC patients and with regard to disease duration. Further studies are needed to elucidate this possible association.


Subject(s)
Campylobacter Infections , Campylobacter , Colitis, Collagenous , Colitis, Lymphocytic , Colitis, Microscopic , Campylobacter Infections/complications , Colitis, Microscopic/complications , Humans
12.
Pathogens ; 9(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164338

ABSTRACT

Shotgun metagenomics is of great importance in order to understand the composition of the microbial community associated with a sample and the potential impact it may exert on its host. For clinical metagenomics, one of the initial challenges is the accurate identification of a pathogen of interest and ability to single out that pathogen within a complex community of microorganisms. However, in absence of an accurate identification of those microorganisms, any kind of conclusion or diagnosis based on misidentification may lead to erroneous conclusions, especially when comparing distinct groups of individuals. When comparing a shotgun metagenomic sample against a reference genome sequence database, the classification itself is dependent on the contents of the database. Focusing on the genus Streptococcus, we built four synthetic metagenomic samples and demonstrated that shotgun taxonomic profiling using the bacterial core genes as the reference database performed better in both taxonomic profiling and relative abundance prediction than that based on the marker gene reference database included in MetaPhlAn2. Additionally, by classifying sputum samples of patients suffering from chronic obstructive pulmonary disease, we showed that adding genomes of genomospecies to a reference database offers higher taxonomic resolution for taxonomic profiling. Finally, we show how our genomospecies database is able to identify correctly a clinical stool sample from a patient with a streptococcal infection, proving that genomospecies provide better taxonomic coverage for metagenomic analyses.

13.
J Microbiol Immunol Infect ; 52(6): 966-972, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31813733

ABSTRACT

BACKGROUND/PURPOSE: Acinetobacter is an aerobic, gram-negative coccobacillus, which causes nosocomial infections including bacteremia. Recent development of molecular techniques has made classification of the Acinetobacter genomospecies possible, but there are still only a few studies comparing clinical features of the subspecies. We investigated bacteremia caused by Acinetobacter, isolated subspecies, and compared clinical features for each group. METHODS: A retrospective analysis of Acinetobacter bacteremia cases was made in a 900-bed hospital in Japan. In addition to conventional procedures, subspecies identification based on rpoB sequence was made, and comparison of clinical characteristics between each subspecies were analyzed. RESULTS: We collected 35 cases (Acinetobacter baumannii 14, A. nosocomialis 12, Acinetobacter ursingii 6, and A. seifertii 3). All of the A. seifertii bacteremia cases were blood stream infection occurring in cerebrovascular disease patients, showing particularly higher incidence of shock (100%) and high Pitt bacteremia score (PBS) (6.33 ± 2.52) in comparison to A. baumannii (43% and 2.86 ± 2.25, respectively). Sequential Organ Failure Assessment (SOFA) score and the PBS were slightly higher in A. nosocomialis in comparison to A. baumannii, and the 7 day mortality rate was higher in A. nosocomialis (25%) than in A. baumannii (7%), though this difference was not found to be significant. CONCLUSIONS: A.seifertii, the recently defined novel species, showed distinctive clinical features of bacteremia. And, in contrast to previous studies, the severity of A. nosocomialis infection was not lower than that of A. baumannii, which might suggest the influence of local epidemiology. Further characterization of these subspecies should be continued.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter/classification , Bacteremia/microbiology , Hospitals , Acinetobacter/drug effects , Acinetobacter/genetics , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Cross Infection/microbiology , Female , Genotype , Humans , Japan , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Young Adult
14.
Microb Genom ; 4(8)2018 08.
Article in English | MEDLINE | ID: mdl-30084764

ABSTRACT

Stenotrophomonas maltophilia has evolved as one of the leading multidrug-resistant pathogens responsible for a variety of nosocomial infections especially in highly debilitated patients. As information on the genomic and intraspecies diversity of this clinically important pathogen is limited, we sequenced the whole genome of 27 clinical isolates from hospitalized patients. Phylogenomic analysis along with the genomes of type strains suggested that the clinical isolates are distributed over the Stenotrophomonas maltophilia complex (Smc) within the genus Stenotrophomonas. Further genome-based taxonomy coupled with the genomes of type strains of the genus Stenotrophomonas allowed us to identify five cryptic genomospecies, which are associated with the clinical isolates of S. maltophilia and are potentially novel species. These isolates share a very small core genome that implies a high level of genetic diversity within the isolates. Recombination analysis of core genomes revealed that the impact of recombination is more than mutation in the diversification of clinical S. maltophilia isolates. Distribution analysis of well-characterized antibiotic-resistance and efflux pump genes of S. maltophilia across multiple novel genomospecies provided insights into its antibiotic-resistant ability. This study supports the existence of multiple cryptic species within the Smc besides S. maltophilia, which are associated with human infections, and highlights the importance of genome-based approaches to delineate bacterial species. This data will aid in improving clinical diagnosis and for understanding species-specific clinical manifestations of infection due to Stenotrophomonas species.


Subject(s)
Cross Infection/genetics , Drug Resistance, Bacterial/genetics , Gram-Negative Bacterial Infections/genetics , Phylogeny , Stenotrophomonas maltophilia/genetics , Humans , Stenotrophomonas maltophilia/isolation & purification
15.
Syst Appl Microbiol ; 41(4): 311-323, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29653822

ABSTRACT

Diazotrophic Actinobacteria of the genus Frankia represent a challenge to classical bacterial taxonomy as they include many unculturable strains. As a consequence, we still have a poor understanding of their diversity, evolution and biogeography. In this study, a Multi-Locus Sequence Analysis (MLSA) using atpD, dnaA, ftsZ, pgk, and rpoB loci was done on a large set of cultured and uncultured strains, compared to 16S rRNA and correlated to Average Nucleotide Identity (ANI) from available Frankia genomes. MLSA provided a robust resolution of Frankia genus phylogeny and clarified the status of unresolved species and complex of species. The robustness of single-gene topologies and their congruence with the MLSA tree were tested. Lateral Gene Transfers (LGT) were few and scattered, suggesting they had no impact on the concatenate topology. The pgk marker - providing the longest sequence, highest mean genetic divergence and least occurrence of LGT - was used to survey an unequalled number of Alnus-infective Frankia - mainly uncultured strains from a broad range of host-species and geographic origins. This marker allowed reliable Single-Locus Strain Typing (SLST) below the species level, revealed an undiscovered taxonomical diversity, and highlighted the effect of cultivation, sporulation phenotype and host plant species on symbiont richness, diversity and phylogeny.


Subject(s)
Alnus/microbiology , Frankia/classification , Frankia/genetics , Myricaceae/microbiology , Root Nodules, Plant/microbiology , Amplified Fragment Length Polymorphism Analysis , Base Sequence , DNA, Bacterial/genetics , Frankia/isolation & purification , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
16.
Front Physiol ; 8: 543, 2017.
Article in English | MEDLINE | ID: mdl-28824443

ABSTRACT

Campylobacter concisus was previously shown to be associated with inflammatory bowel disease including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus has two genomospecies (GS). This study systematically examined the colonization of GS1 and GS2 C. concisus in the human gastrointestinal tract. GS1 and GS2 specific polymorphisms in 23S rRNA gene were identified by comparison of the 23S rRNA genes of 49 C. concisus strains. Two newly designed PCR methods, based on the polymorphisms of 23S rRNA gene, were developed and validated. These PCR methods were used to detect and quantify GS1 and GS2 C. concisus in 56 oral and enteric samples collected from the gastrointestinal tract of patients with IBD and healthy controls. Meta-analysis of the composition of the isolated GS1 and GS2 C. concisus strains in previous studies was also conducted. The quantitative PCR methods revealed that there was more GS2 than GS1 C. concisus in samples collected from the upper and lower gastrointestinal tract of both patients with IBD and healthy controls, showing that GS2 C. concisus is better adapted to the human gastrointestinal tract. Analysis of GS1 and GS2 composition of isolated C. concisus strains in previous studies showed similar findings except that in healthy individuals a significantly lower GS2 than GS1 C. concisus strains were isolated from fecal samples, suggesting a potential difference in the C. concisus strains or the enteric environment between patients with gastrointestinal diseases and healthy controls. This study provides novel information regarding the adaptation of different genomospecies of C. concisus in the human gastrointestinal tract.

17.
Gut Pathog ; 8: 44, 2016.
Article in English | MEDLINE | ID: mdl-27688814

ABSTRACT

The emerging enteric pathogen Campylobacter concisus is associated with prolonged diarrhea and inflammatory bowel disease. Previous studies have shown that C. concisus strains are very genetically diverse. Nevertheless, C. concisus strains have been divided into two genomospecies, where GS1 strains have been isolated predominantly from healthy individuals, while the GS2 cluster consists of isolates primarily from diarrheic individuals. The aim of the present study was to determine the genetic diversity of C. concisus isolates from Danish diarrheic patients. Multilocus sequence typing using the loci aspA, atpA, glnA, gltA, glyA, ilvD and pgm, as well as genomospecies based on specific differences in the 23S rRNA, was used to characterize 67 isolates (63 fecal and 4 oral), from 49 patients with different clinical presentations (29 with diarrhea, eight with bloody diarrhea, seven with collagenous colitis and five with Crohn's disease). MLST revealed a high diversity of C. concisus with 53 sequence types (STs), of which 52 were identified as 'new' STs. Allele sequences showed more than 90 % similarity between isolates, with only four outliers. Dendrogram profiles of each allele showed a division into two groups, which more or less correlated with genomospecies A and genomospecies B. However, in contrary to previous results, this subgrouping had no association to the clinical severity of disease.

18.
FEMS Microbiol Ecol ; 91(8): fiv081, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26187479

ABSTRACT

Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium.


Subject(s)
Agrobacterium/classification , Crops, Agricultural/microbiology , Cucurbitaceae/microbiology , Genetic Variation , Plant Roots/microbiology , Solanum lycopersicum/microbiology , Agrobacterium/genetics , Agrobacterium/isolation & purification , Base Sequence , DNA, Bacterial/genetics , Phylogeny , Plant Diseases/microbiology , Plasmids/genetics , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Sequence Analysis, DNA
19.
Annu Rev Phytopathol ; 53: 157-80, 2015.
Article in English | MEDLINE | ID: mdl-26002289

ABSTRACT

Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management in agricultural systems. This knowledge is critical for growers, diagnosticians, extension agents, and others dealing with crops. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that are often not used by those who are diagnosing field problems. Modern molecular tools for fingerprinting and sequencing allow for pathogen identification in the absence of distinguishing or conveniently tested phenotypic characteristics. These methods are also useful in studying the etiology and epidemiology of phytopathogenic bacteria from epidemics, as was done in numerous studies conducted in California's Salinas Valley. Multilocus and whole-genome sequence analyses are becoming the cornerstones of studies of microbial diversity and bacterial taxonomy. Whole-genome sequence analysis needs to become adequately accessible, automated, and affordable in order to be used routinely for identification and epidemiology. The power of molecular tools in accurately identifying bacterial pathogenesis is therefore of value to the farmer, diagnostician, phytobacteriologist, and taxonomist.


Subject(s)
Bacteria/classification , Crops, Agricultural/microbiology , Molecular Biology/methods , Plant Diseases/microbiology , Plant Pathology , Bacteria/genetics , California , Plant Pathology/education
20.
Korean J Food Sci Anim Resour ; 34(4): 543-51, 2014.
Article in English | MEDLINE | ID: mdl-26761293

ABSTRACT

The aim of this study was to evaluate the effect of proteolytic (Serratia liquefaciens, match %: 99.39) or lipolytic (Acinetobacter genomospecies 10, match %: 99.90) psychrotrophic bacteria (bacterial counts, analysis of free fatty acids (FFA) and analysis of free amino acids) on the microbial and chemical properties (yogurt composition), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of yogurt during storage. Yogurts were prepared with raw milk preinoculated with each psychrotrophic bacteria. The total solid, fat, and protein content were not affected by preinoculation, but the pH of yogurt preinoculated with psychrotrophic bacteria was higher than in control. There was a dramatic increase in short chain free fatty acids among FFA in yogurt with Acinetobacter genomospecies 10. For 14 d of cold storage condition, SCFFA was 25.3 mg/kg to 34.4 mg/kg (1.36 times increased), MCFFA was 20.4 mg/kg to 25.7 mg/kg (1.26 times increased), and LCFFA was 240.2 mg/kg to 322.8 mg/kg (1.34 times increased). Serratia liquefaciens (match %: 99.39) in yogurt caused a greater accumulation of free amino acids (FAA), especially bitter peptides such as leucine, valine, arginine, and tyrosine, but SDS-PAGE showed that the inoculation of Serratia liquefaciens did not affect the degree of casein degradation during storage. Taken together, the excessive peptides and FFA in yogurt generated from psychrotrophic bacteria could develop off-flavors that degrade the quality of commercial yogurt products.

SELECTION OF CITATIONS
SEARCH DETAIL
...