Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.021
Filter
1.
Aging Cell ; : e14323, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223708

ABSTRACT

Sarcopenia, the progressive loss of muscle mass and function, universally affects older adults and is closely associated with frailty and reduced quality of life. Despite the inevitable consequences of sarcopenia and its relevance to healthspan, no pharmacological therapies are currently available. Ghrelin is a gut-released hormone that increases appetite and body weight through acylation. Acylated ghrelin activates its receptor, growth hormone secretagogue receptor 1a (GHSR1a), in the brain by binding to it. Studies have demonstrated that acyl and unacylated ghrelin (UnAG) both have protective effects against acute pathological conditions independent of receptor activation. Here, we investigated the long-term effects of UnAG in age-associated muscle atrophy and contractile dysfunction in mice. Four-month-old and 18-month-old mice were subjected to either UnAG or control treatment for 10 months. UnAG did not affect food consumption or body weight. Gastrocnemius and quadriceps muscle weights were reduced by 20%-30% with age, which was partially protected against by UnAG. Specific force, force per cross-sectional area, measured in isolated extensor digitorum longus muscle was diminished by 30% in old mice; however, UnAG prevented the loss of specific force. UnAG also protected from decreases in mitochondrial respiration and increases in hydrogen peroxide generation of skeletal muscle of old mice. Results of bulk mRNA-seq analysis and our contractile function data show that UnAG reversed neuromuscular junction impairment that occurs with age. Collectively, our data revealed the direct role of UnAG in mitigating sarcopenia in mice, independent of food consumption or body weight, implicating UnAG treatment as a potential therapy against sarcopenia.

2.
Hum Cell ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225978

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.

3.
Front Nutr ; 11: 1422431, 2024.
Article in English | MEDLINE | ID: mdl-39246401

ABSTRACT

Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.

4.
J Cardiothorac Surg ; 19(1): 508, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223636

ABSTRACT

BACKGROUND: To investigate the protective effect and mechanism of Ghrelin on Doxorubicin (Dox) hydrochloride induced heart failure (HF) and myocardial injury in rats. METHODS: 45 rats were randomly divided into control group, HF group and Ghrelin group. Dox hydrochloride was injected intraperitoneally to establish the model of HF in rats of HF group and Ghrelin group. Rats in the Ghrelin group were given intraperitoneal injection of Ghrelin twice a day, and rats in the HF group and control group were given equal volume of normal saline for a total of 6 weeks. The changes of echocardiography, cardiac hemodynamics, myocardial histology and plasma inflammatory factors were observed. RESULTS: After the Ghrelin intervention, compared with the HF group, the left ventricular end-diastolic diameter (LVDD) and left ventricular end-systolic diameter (LVSD) in the Ghrelin group was markedly reduced (P < 0.05), and left ventricular ejection fraction (LVEF) was significantly increased (P < 0.05). Compared with HF group, the left ventricular systolic pressure (LVSP), maximum rate of increase in left ventricular pressure (+ dP/dtmax) and maximum rate of decrease in left ventricular pressure (- dP/dtmax) of Ghrelin group was remarkedly increased (P < 0.05), left ventricular diastolic pressure (LVDP) decreased (P < 0.05). In the Ghrelin group, the degree and extent of cardiomyocyte degeneration and necrosis were remarkedly reduced compared with the HF group. The levels of TNF-α and iNOS in Ghrelin group were notably lower than those in HF group (P < 0.05), the IL-10 level increased markedly (P < 0.05). CONCLUSION: Ghrelin may reduce Dox-induced myocardial injury and improve cardiac function in rats by regulating inflammation and oxidative stress.


Subject(s)
Disease Models, Animal , Doxorubicin , Ghrelin , Heart Failure , Rats, Sprague-Dawley , Animals , Ghrelin/pharmacology , Doxorubicin/toxicity , Heart Failure/drug therapy , Heart Failure/chemically induced , Heart Failure/physiopathology , Rats , Male , Antibiotics, Antineoplastic/toxicity , Echocardiography , Myocardium/pathology , Myocardium/metabolism , Hemodynamics/drug effects
5.
Wiad Lek ; 77(8): 1554-1561, 2024.
Article in English | MEDLINE | ID: mdl-39231326

ABSTRACT

OBJECTIVE: Aim: To investigate lipid profile parameters depending the polymorphism of the A1166C I type gene receptor of the angiotensin II as a predictor of arterial hypertension. PATIENTS AND METHODS: Materials and Methods: The study involved 86 patients with arterial hypertension. The control group consisted of 30 practically healthy individuals. Indicators of lipid metabolism in the blood serum of patients were determined using "Lachema" kits on an analyzer. The the polymorphism of the A1166C I type gene receptor of the angiotensin II was studied by polymerase chain reaction with electrophoretic detection of the results. RESULTS: Results: Higher levels of total cholesterol were found in patients with CC genotype compared to AA genotype carriers ((8.94±0.09) vs (5.18±0.02) mmol/L). The level of low-density lipoprotein in CC-genotype carriers was (7.43±0.03) versus (3.66±0.02) mmol/L in A-allele homozygotes. Triglycerides and very low density lipoproteins were also significantly higher in CC genotype carriers compared to patients with AA genotype. The level of high-density lipoprotein was lower in homozygotes with C-allele than in patients with the AA genotype, and was (0.59±0.12) versus (0.99±0.03) mmol/L. CONCLUSION: Conclusions: The presence in the CC genotype the I type gene receptor of the angiotensin II type is a predictor of dyslipidemia. In patients with arterial hypertension, the presence in the C-allele of the I type gene of the angiotensin II type contributes to a significant increase in serum adipokines and a decrease in ghrelin levels.


Subject(s)
Hypertension , Polymorphism, Genetic , Receptor, Angiotensin, Type 1 , Humans , Hypertension/genetics , Hypertension/blood , Male , Female , Receptor, Angiotensin, Type 1/genetics , Middle Aged , Lipids/blood , Adult , Genotype
6.
Neuromodulation ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39115505

ABSTRACT

OBJECTIVES: This study aimed to investigate the integrative effects and mechanisms of transcutaneous electrical acustimulation (TEA) on postprocedural recovery from endoscopic retrograde cholangio-pancreatography (ERCP). MATERIALS AND METHODS: A total of 86 patients for elective ERCP were randomly ordered to receive TEA (n = 43) at acupoints PC6 and ST36 or Sham-TEA (n = 43) at sham points from 24 hours before ERCP (pre-ERCP) to 24 hours after ERCP (PE24). Scores of gastrointestinal (GI) motility-related symptoms and abdominal pain, gastric slow waves, and autonomic functions were recorded through the spectral analysis of heart rate variability; meanwhile, circulatory levels of inflammation cytokines of tumor necrosis factor-α (TNF-α) and interleukin (IL)-10 and GI hormones of motilin, ghrelin, cholecystokinin (CCK), and vasoactive intestinal peptide (VIP) were assessed by enzyme-linked immunosorbent assay. RESULTS: 1) TEA, but not Sham-TEA, decreased the post-ERCP GI motility-related symptom score (2.4 ± 2.6 vs 7.9 ± 4.6, p < 0.001) and abdominal pain score (0.5 ± 0.7 vs 4.1 ± 2.7, p < 0.001) at PE24, and decreased the post-ERCP hospital day by 20.0% (p <0.05 vs Sham-TEA); 2) TEA improved the average gastric percentage of normal slow waves and dominant frequency by 34.6% and 33.3% at PE24, respectively (both p < 0.001 vs Sham-TEA); 3) TEA, but not Sham-TEA, reversed the ERCP-induced increase of TNF-α but not IL-10 at PE24, reflected as a significantly lower level of TNF-α in the TEA group than in the Sham-TEA group (1.6 ± 0.5 pg/mL vs 2.1 ± 0.9 pg/mL, p < 0.01); 4) compared with Sham-TEA, TEA increased vagal activity by 37.5% (p < 0.001); and 5) TEA caused a significantly higher plasma level of ghrelin (1.5 ± 0.8 ng/ml vs 1.1 ± 0.7 ng/ml, p < 0.05) but not motilin, VIP, or CCK than did Sham-TEA at PE24. CONCLUSION: TEA at PC6 and ST36 accelerates the post-ERCP recovery, reflected as the improvement in GI motility and amelioration of abdominal pain, and suppression of the inflammatory cytokine TNF-α may mediate through both autonomic and ghrelin-related mechanisms.

7.
Article in English | MEDLINE | ID: mdl-39179950

ABSTRACT

Ghrelin exerts widespread effects in several diseases, but its role and mechanism in Acute Traumatic Coagulopathy (ATC) are largely unknown. The effect of ghrelin on cell proliferation was examined using three assays: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), Lactate Dehydrogenase (LDH), and flow cytometry. The barrier function of the endothelial cells was evaluated using the Trans-Endothelial Electrical Resistance (TEER) and the endothelial permeability assay. An ATC mouse model was established to evaluate the in vivo effects of ghrelin. The Ras homolog family member A (RhoA) overexpression plasmid or adenovirus was used to examine the molecular mechanism of ghrelin. Ghrelin enhanced Human Umbilical Vein Endothelial Cells (HUVEC) proliferation and endothelial cell barrier function and inhibited HUVEC permeability damage in vitro. Additionally, ghrelin decreased the activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) in mice blood samples in the ATC mouse model. Ghrelin also improved the pathological alterations in postcava. Mechanistically, ghrelin acts through the RhoA/ Rho-associated Coiled-coil Containing Kinases (ROCK)/ Myosin Light Chain 2 (MLC2) pathway. Furthermore, the protective effects of ghrelin, both in vitro and in vivo, were reversed by RhoA overexpression. Our findings demonstrate that ghrelin may reduce vascular endothelial cell damage and endothelial barrier dysfunction by blocking the RhoA pathway, suggesting that ghrelin may serve as a potential therapeutic target for ATC treatment.

8.
Skin Res Technol ; 30(8): e13919, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113612

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) presents impediment to wound healing. While ultraviolet B (UVB) exposure showed therapeutic potential in various skin conditions, its capacity to mediate diabetic wound healing remains unclear. To investigate the efficacy of UVB on wound healing and its underlying basis. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to the high-fat diet followed by streptozotocin administration to establish the diabetic model. Upon confirmation of diabetes, full-thickness wounds were inflicted and the treatment group received UVB radiation at 50 mJ/cm2 for 5 min every alternate day for 2 weeks. Wound healing rate was then assessed, accompanied by evaluations of blood glucose, lipid profiles, CD31 expression, and concentrations of ghrelin and leptin. Concurrently, in vitro studies were executed to evaluate the protective role of ghrelin on human umbilical vein endothelial cells (HUVEC) under high glucose (HG) conditions. RESULTS: Post UVB exposure, there was a marked acceleration in wound healing in DM mice without alterations in hyperglycemia and lipid profiles. Compared to non-UVB-exposed mice, the UVB group showed enhanced angiogenesis manifested by a surge in CD31 expression. This trend appeared to be in harmony with the elevated ghrelin levels. In vitro experiments indicated that ghrelin significantly enhanced the migratory pace and angiogenic properties of HUVEC under HG-induced stress, potentially mediated by an upregulation in vascular endothelial growth factor expression. CONCLUSION: UVB exposure bolstered wound healing in diabetic mice, plausibly mediated through augmented angiogenesis induced by ghrelin secretion. Such findings underscore the vast potential of UVB-induced ghrelin in therapeutic strategies targeting diabetic wound healing.


Subject(s)
Diabetes Mellitus, Experimental , Ghrelin , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Wound Healing , Animals , Humans , Male , Mice , Blood Glucose/metabolism , Ghrelin/metabolism , Ghrelin/radiation effects , Leptin/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Skin/radiation effects , Skin/pathology , Skin/metabolism , Ultraviolet Rays/adverse effects , Ultraviolet Therapy/methods , Wound Healing/radiation effects
9.
Mol Pharmacol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187389

ABSTRACT

The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50)=-2.10 {plus minus} 0.44 and a maximal inhibition of 42.8 {plus minus} 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 {plus minus} 16.7% vs 1.9 {plus minus} 2.5%, n=6, p=0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by Gαi/o or Gαq/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition=15.7 {plus minus} 10.6%, n=8, p=0.0327) and YM-254890 (15.2 {plus minus} 11.9%, n=8, p=0.0269) blocked ghrelin's effects on Ca2+ currents, as compared to control neurons (34.3 {plus minus} 18.9%, n=8). These results indicate GHSR1a can couple to both Gαi/o and Gαq/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. Significance Statement This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insight into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.

10.
Eur J Pharmacol ; 981: 176880, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39128804

ABSTRACT

Ghrelin modulates several biological functions via selective activation of the growth hormone secretagogue receptor (GHSR). GHSR agonists may be useful for the treatment of anorexia and cachexia, while antagonists and inverse agonists may represent new drugs for the treatment of metabolic and substance use disorders. Thus, the identification and pharmacodynamic characterization of new GHSR ligands is of high interest. In the present work the label-free dynamic mass redistribution (DMR) assay has been used to evaluate the pharmacological activity of a panel of GHSR ligands. This includes the endogenous peptides ghrelin, desacyl-ghrelin and LEAP2(1-14). Among synthetic compounds, the agonists anamorelin and HM01, the antagonists HM04 and YIL-781, and the inverse agonist PF-05190457 have been tested, together with HM03, R011, and H1498 from patent literature. The DMR results have been compared to those obtained in parallel experiments with the calcium mobilization assay. Ghrelin, anamorelin, HM01, and HM03 behaved as potent full GHSR agonists. YIL-781 behaved as a partial GHSR agonist and R011 as antagonist in both the assays. LEAP2(1-14) resulted a GHSR inverse agonist in DMR but not in calcium mobilization assay. PF-05190457, HM04, and H1498 behaved as GHSR inverse agonists in DMR experiments, while they acted as antagonists in calcium mobilization studies. In conclusion, this study provided a systematic pharmacodynamic characterization of several GHSR ligands in two different pharmacological assays. It demonstrated that the DMR assay can be successfully used particularly to discriminate between antagonists and inverse agonists. This study may be useful for the selection of the most appropriate compounds to be used in future studies.


Subject(s)
Calcium , Ghrelin , Receptors, Ghrelin , Receptors, Ghrelin/agonists , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/antagonists & inhibitors , Ligands , Ghrelin/pharmacology , Ghrelin/metabolism , Calcium/metabolism , Humans , Animals , Cricetulus , CHO Cells , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Hydrazines , Piperidines , Quinazolinones
11.
Nutrients ; 16(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39203743

ABSTRACT

In frail older adults (mean age 85 years old), a 3-month supplementation with a low dose (6 g/day) of medium-chain triglycerides (MCTs; C8:0 and C10:0) given at a meal increased muscle mass and function, relative to supplementation with long-chain triglycerides (LCTs), but it decreased fat mass. The reduction in fat mass was partly due to increased postprandial energy expenditure by stimulation of the sympathetic nervous system (SNS). However, the extracellular signals to ameliorate sarcopenia are unclear. The following three potential extracellular signals to increase muscle mass and function after MCT supplementation are discussed: (1) Activating SNS-the hypothesis for this is based on evidence that a beta2-adrenergic receptor agonist acutely (1-24 h) markedly upregulates isoforms of peroxisomal proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNAs, promotes mitochondrial biogenesis, and chronically (~1 month) induces muscle hypertrophy. (2) An increased concentration of plasma acyl-ghrelin stimulates growth hormone secretion. (3) A nitrogen-sparing effect of ketone bodies, which fuel skeletal muscle, may promote muscle protein synthesis and prevent muscle protein breakdown. This review will help guide clinical trials of using MCTs to treat primary (age-related) sarcopenia.


Subject(s)
Frail Elderly , Muscle, Skeletal , Sarcopenia , Triglycerides , Humans , Sarcopenia/drug therapy , Sarcopenia/metabolism , Aged, 80 and over , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Aged , Dietary Supplements , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Ketone Bodies/metabolism , Energy Metabolism/drug effects , Male
12.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125635

ABSTRACT

Exercise training is a valuable tool for improving body weight and composition in overweight or obese adults, which leads to a negative energy balance. It is relevant to consider whether exercise can help people lose weight or prevent weight gain because any energy expended in exercise increases the severity of hunger and promotes food consumption. Over the past decade, the identification of the circulating peptide ghrelin, which alerts the brain to the body's nutritional state, has significantly expanded our understanding of this homeostatic mechanism that controls appetite and body weight. To shed more light on this issue, we decided to investigate the effects of resistance and endurance training on plasma ghrelin and leptin levels. In addition, we sought to understand the mechanisms by which acute and chronic exercise can regulate hunger. This review analyzes studies published in the last fifteen years that focused on changes suffered by ghrelin, leptin, or both after physical exercise in overweight or obese individuals. Most studies have shown a decrease in leptin levels and an increase in ghrelin levels in these cases. Exercise regimens that support weight maintenance need further investigation.


Subject(s)
Endurance Training , Ghrelin , Leptin , Obesity , Overweight , Resistance Training , Ghrelin/blood , Humans , Leptin/blood , Obesity/blood , Obesity/therapy , Endurance Training/methods , Overweight/blood , Overweight/therapy , Overweight/metabolism , Exercise/physiology
13.
J Med Life ; 17(5): 486-491, 2024 May.
Article in English | MEDLINE | ID: mdl-39144689

ABSTRACT

This study aimed to evaluate the cardioprotective effects of ghrelin in septic mice, focusing on its anti-inflammatory and antioxidant properties. Thirty-five male Swiss mice (8-12 weeks old, 23-33g) were randomly assigned to five groups (n = 7 each): (1) Normal, fed usual diets, (2) Sham, subjected to anesthesia and laparotomy, (3) Sepsis, subjected to cecal ligation and puncture, (4) Vehicle, given an equivalent volume of intraperitoneal saline injections immediately after cecal ligation and puncture, and (5) Ghrelin-treated, administered 80 µg/kg ghrelin intraperitoneal injections immediately following cecal ligation and puncture. Serum levels of tumor necrosis factor-alpha (TNF-α), macrophage migration inhibitory factor (MIF), toll-like receptor 4 (TLR4), and 8-epi-prostaglandin F2 alpha (8-epi-PGF2α) were measured. The extent of cardiac damage was also evaluated histologically. The mean serum levels of TNF-α, MIF, TLR4, and 8-epi-PGF2α levels were significantly higher in the sepsis and vehicle groups than in the normal and sham groups. The levels were significantly lower in the ghrelin-treated group than in the vehicle and sepsis groups. Histological analysis revealed normal myocardial architecture in the normal and sham groups, whereas the sepsis and vehicle groups had severe myocardial injury. The ghrelin-treated group displayed histological features similar to the sham group, indicating reduced myocardial damage. Ghrelin ameliorated sepsis-induced cardiotoxicity in mice by exhibiting strong anti-inflammatory and antioxidant effects. These findings suggest that ghrelin may be a promising therapeutic candidate for the prevention of sepsis-induced cardiotoxicity.


Subject(s)
Cardiotonic Agents , Endotoxemia , Ghrelin , Tumor Necrosis Factor-alpha , Animals , Mice , Male , Ghrelin/blood , Endotoxemia/blood , Endotoxemia/drug therapy , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Tumor Necrosis Factor-alpha/blood , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Dinoprost/analogs & derivatives , Dinoprost/blood , Macrophage Migration-Inhibitory Factors/blood , Sepsis/drug therapy , Sepsis/complications , Antioxidants/pharmacology
14.
Biochimie ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147011

ABSTRACT

It is widely recognized that developing bi- or multifunctional opioid compounds could offer a valuable approach to pain management with fewer side effects compared to single-target compounds. In this study, we designed and characterized two novel chimeric peptides, EM-1-DLS and EM-2-DLS, incorporating endomorphins (EMs) and the ghrelin receptor antagonist [D-Lys3]-GHRP-6 (DLS). Functional assays demonstrated that EM-1-DLS and EM-2-DLS acted as κ-opioid receptor (κ-OR)-preferring agonists, weak µ-opioid receptors (µ-OR) and ghrelin receptor (GHSR) agonists. Upon intracerebroventricular (i.c.v.) administration in mice, both EM-1-DLS and EM-2-DLS exhibited dose- and time-dependent antinociceptive effects in the tail withdrawal test. EM-1-DLS demonstrated the highest antinociceptive potency among the peptides, with an ED50 approximately 8-fold greater than EM-1, while EM-2-DLS showed comparable effects to EM-2. The antinociceptive actions of EM-1-DLS involved activation of GHS-R1α, µ-OR, and κ-OR, whereas EM-2-DLS acted via GHS-R1α, δ-OR, and κ-OR pathways. Additionally, acute antinociceptive tolerance was investigated, revealing that EM-1-DLS induced a tolerance ratio of 2.33-fold, significantly lower than the 5.19-fold ratio induced by EM-1. Cross-tolerance ratios between the chimeric peptides and EMs ranged from 0.92 to 1.76, indicating reduced tolerance compared to EMs alone. These findings highlight the potential of these chimeric peptides to mitigate pain with diminished tolerance development, suggesting a promising strategy for the development of new analgesic therapies with improved safety profiles.

15.
Curr Neuropharmacol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39041263

ABSTRACT

Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both in vivo and in vitro, although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the antiinflammatory and anti-oxidative properties of ghrelin may give a key contribution.

16.
Pharmacol Res Perspect ; 12(4): e1243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016695

ABSTRACT

Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.


Subject(s)
Anti-Obesity Agents , Appetite Regulation , Cholecystokinin , Obesity , Humans , Animals , Obesity/drug therapy , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Appetite Regulation/drug effects , Ghrelin/pharmacology , Ghrelin/therapeutic use , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/pharmacology , Peptide YY/pharmacology , Peptide YY/therapeutic use , Appetite Depressants/pharmacology , Appetite Depressants/therapeutic use
17.
Sci Rep ; 14(1): 14971, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38951515

ABSTRACT

Fetal alcohol spectrum disorders (FASD) are a severe developmental condition resulting from exposure to alcohol during pregnancy. The aim of this study was to examine the concentrations of hormones involved in appetite regulation-ghrelin, leptin, and putative peptide YY-3 (PYY)-in the serum of individuals with FASD. Additionally, we investigated the relationship between these hormone levels and clinical indicators. We conducted an enzyme-linked immunosorbent assay on samples collected from 62 FASD patients and 23 individuals without the condition. Our results revealed a significant decrease in leptin levels among FASD patients compared to the control group (5.124 vs. 6.838 ng/mL, p = 0.002). We revealed no statistically significant differences in the levels of other hormones studied (ghrelin and PYY). Comparisons of hormone levels were also conducted in three subgroups: FAS, neurobehavioral disorders associated with prenatal alcohol exposure and FASD risk, as well as by sex. Assignment to FASD subgroups indicated changes only for leptin. Sex had no effect on the levels of hormones. Moreover, the levels of leptin showed a negative correlation with cortisol levels and a positive correlation with BMI and proopiomelanocortin. Alterations in appetite regulation can contribute to the improper development of children with FASD, which might be another factor that should be taken into consideration in the proper treatment of patients.


Subject(s)
Fetal Alcohol Spectrum Disorders , Ghrelin , Leptin , Peptide YY , Humans , Leptin/blood , Fetal Alcohol Spectrum Disorders/blood , Female , Ghrelin/blood , Male , Peptide YY/blood , Pregnancy , Child , Adult , Case-Control Studies , Child, Preschool
18.
Behav Brain Funct ; 20(1): 18, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965529

ABSTRACT

BACKGROUND: Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS: In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS: This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.


Subject(s)
Anxiety , Ghrelin , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, Ghrelin , Signal Transduction , Stress, Psychological , Animals , Ghrelin/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Male , Anxiety/metabolism , Anxiety/psychology , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Rats , Stress, Psychological/metabolism , Stress, Psychological/psychology , Signal Transduction/drug effects , Signal Transduction/physiology , Behavior, Animal/drug effects
19.
J Clin Med ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999303

ABSTRACT

Atherosclerosis, a leading cause of peripheral artery disease (PAD), is driven by lipid accumulation and chronic inflammation within arterial walls. Objectives: This study investigates the expression of ghrelin, an anti-inflammatory peptide hormone, in plaque morphology and inflammation in patients with PAD, highlighting its potential role in age-related vascular diseases and metabolic syndrome. Methods: The analysis specifically focused on the immunohistochemical expression of ghrelin in atherosclerotic plaques and perivascular adipose tissue (PVAT) from 28 PAD patients. Detailed immunohistochemical staining was performed to identify ghrelin within these tissues, comparing its presence in various plaque types and assessing its association with markers of inflammation and macrophage polarization. Results: Significant results showed a higher prevalence of calcification in fibro-lipid plaques (63.1%) compared to fibrous plaques, with a notable difference in inflammatory infiltration between the two plaque types (p = 0.027). Complicated plaques exhibited increased ghrelin expression, suggesting a modulatory effect on inflammatory processes, although this did not reach statistical significance. The correlation between ghrelin levels and macrophage presence, especially the pro-inflammatory M1 phenotype, indicates ghrelin's involvement in the inflammatory dynamics of atherosclerosis. Conclusions: The findings propose that ghrelin may influence plaque stability and vascular inflammation, pointing to its therapeutic potential in managing atherosclerosis. The study underlines the necessity for further research to clarify ghrelin's impact on vascular health, particularly in the context of metabolic syndrome and age-related vascular alterations.

20.
Anim Reprod Sci ; 268: 107550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996787

ABSTRACT

Ghrelin, a peptide found in the brain and gut, is predicted to play a significant role in the control of various physiological systems in fish. The objective of this study was to examine the impact of ipamorelin acetate (IPA), a ghrelin agonist, on the reproductive axis of the tilapia Oreochromis mossambicus. The administration of either 5 or 30 µg of IPA for 21 days led to a significant and dose-dependent rise in food intake concomitant with a significant increase in the numbers of primary spermatocytes, secondary spermatocytes, and early spermatids compared to the control group. There was a significant rise in the number of late spermatids, as well as the areas of the lobule and lumen, in fish treated with 30 µg of IPA, compared to the control group. Moreover, there was no significant difference in the percentage of gonadotropin-releasing hormone (GnRH)-immunoreactive fibres in the hypothalamus and anterior pituitary gland across different groups. However, a significant elevation in the expression of androgen receptor protein was observed in fish treated with 30 µg of IPA. Furthermore, the concentrations of luteinizing hormone (LH) and 11-ketotestosterone (11-KT) in the serum of fish treated with either 5 or 30 µg of IPA were significantly elevated in comparison to the control group. Collectively, these findings suggest that the administration of ghrelin enhances the development of germ cells during the meiosis-I phase and that this effect might be mediated via the stimulation of 11-KT and androgen receptors at the testicular level and LH at the pituitary level in the tilapia.


Subject(s)
Ghrelin , Hypothalamo-Hypophyseal System , Testis , Tilapia , Animals , Male , Ghrelin/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/agonists , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Oligopeptides/pharmacology , Spermatogenesis/drug effects , Testis/drug effects , Testis/metabolism , Testosterone/analogs & derivatives , Testosterone/blood , Tilapia/metabolism , Tilapia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL