Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Plant Cell Rep ; 43(7): 170, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869848

ABSTRACT

KEY MESSAGE: The silencing of GhGASA14 and the identification of superior allelic variation in its coding region indicate that GhGASA14 may positively regulate flowering and the response to GA3. Gibberellic acid-stimulated Arabidopsis (GASA), a member of the gibberellin-regulated short amino acid family, has been extensively investigated in several plant species and found to be critical for plant growth and development. However, research on this topic in cotton has been limited. In this study, we identified 38 GhGASAs that were dispersed across 18 chromosomes in upland cotton, and all of these genes had a GASA core domain. Transcriptome expression patterns and qRT-PCR results revealed that GhGASA9 and GhGASA14 exhibited upregulated expression not only in the floral organs but also in the leaves of early-maturing cultivars. The two genes were functionally characterized by virus-induced gene silencing (VIGS), and the budding and flowering times after silencing the target genes were later than those of the control (TRV:00). Compared with that in the water-treated group (MOCK), the flowering period of the different fruiting branches in the GA3-treated group was more concentrated. Interestingly, allelic variation was detected in the coding sequence of GhGASA14 between early-maturing and late-maturing accessions, and the frequency of this favorable allele was greater in high-latitude cotton cultivars than in low-latitude ones. Additionally, a significant linear relationship was observed between the expression level of GhGASA14 and flowering time among the 12 upland cotton accessions. Taken together, these results indicated that GhGASA14 may positively regulate flowering time and respond to GA3. These findings could lead to the use of valuable genetic resources for breeding early-maturing cotton cultivars in the future.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Gibberellins , Gossypium , Plant Proteins , Gossypium/genetics , Gossypium/physiology , Gossypium/drug effects , Flowers/genetics , Flowers/drug effects , Flowers/physiology , Flowers/growth & development , Gibberellins/pharmacology , Gibberellins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Silencing
2.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852726

ABSTRACT

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Gibberellins , Liposomes , Mercury , Oryza , Cytochrome P-450 Enzyme System/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology
3.
Methods Mol Biol ; 2832: 257-279, 2024.
Article in English | MEDLINE | ID: mdl-38869802

ABSTRACT

Various bacterial species are associated with plant roots. However, symbiotic and free-living plant growth-promoting bacteria (PGPB) can only help plants to grow and develop under normal and stressful conditions. Several biochemical and in vitro assays were previously designed to differentiate between the PGPB and other plant-associated bacterial strains. This chapter describes and summarizes some of these assays and proposes a strategy to screen for PGPB. To determine the involvement of the PGPB in abiotic stress tolerance, assays for the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ammonium, gibberellic acid (GA), indole acetic acid (IAA), and microbial volatile organic compounds (mVOCs) are described in this chapter. Additionally, assays to show the capacity to solubilize micronutrients such as potassium, phosphorus, and zinc by bacteria were also summarized in this chapter. To determine the contribution of the PGPB in biotic stress tolerance in plants, Fe-siderophore, hydrogen cyanide, and antibiotic and antifungal metabolites production assays were described. Moreover, assays to investigate the growth-promotion activities of a bacterium strain on plants, using the gnotobiotic root elongation, in vitro, and pots assays, were explained. Finally, an assay for the localization of endophytic bacterium in plant tissues was also presented in this chapter. Although the assays described in this chapter can give evidence of the nature of the mechanism behind the PGPB actions, other unknown growth-promoting means are yet to decipher, and until then, new methodologies will be developed.


Subject(s)
Bacteria , Plant Development , Plant Growth Regulators , Plant Roots , Stress, Physiological , Bacteria/growth & development , Bacteria/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Symbiosis , Plants/microbiology , Plants/metabolism , Soil Microbiology , Gibberellins/metabolism , Volatile Organic Compounds/metabolism
4.
Bioresour Technol ; 406: 131017, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908761

ABSTRACT

Biodiesel production from microalgae presents an innovative solution for renewable energy. This study investigates biodiesel production using Tetradesmus obliquus ON506010.1 by optimizing substrates, selenium and gibberellic acid. Using 15 µg/L selenium, lipid content and biomass productivity reached 35.45 %±0.92 and 0.178 g/L/day ± 0.051. With 50 µM gibberellic acid, biomass productivity and lipid content peaked at 0.785 ± 0.101 g/L/day and 38.95 %±0.35, surpassing the control. Fatty acid composition, biodiesel properties, and mRNA expression of lipid synthesis enzymes (acetyl CoA carboxylase (ACC) and fatty acid desaturase (FAD)) correlated. Combining 10 µg/L selenium with 75 µM gibberellic acid with response surface methodology (RSM) increased lipid content (42.80 % ±0.11) and biomass productivity (0.964 g/L/day ± 0.128). ACC and FAD upregulation validated this enhancement, with a 4.4-fold increase in FAD expression. Fatty acid composition and most biodiesel properties met international standards demonstrating Tetradesmus obliquus ON506010.1's potential for sustainable biodiesel production with better cold flow property and oxidative stability.

5.
Microorganisms ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930505

ABSTRACT

Considering current global climate change, drought stress is regarded as a major problem negatively impacting the growth of soybeans, particularly at the critical stages R3 (early pod) and R5 (seed development). Microbial inoculation is regarded as an ecologically friendly and low-cost-effective strategy for helping soybean plants withstand drought stress. The present study aimed to isolate newly drought-tolerant bacteria from native soil and evaluated their potential for producing growth-promoting substances as well as understanding how these isolated bacteria along with arbuscular mycorrhizal fungi (AMF) could mitigate drought stress in soybean plants at critical growth stages in a field experiment. In this study, 30 Bradyrhizobium isolates and 30 rhizobacterial isolates were isolated from the soybean nodules and rhizosphere, respectively. Polyethylene glycol (PEG) 6000 was used for evaluating their tolerance to drought, and then the production of growth promotion substances was evaluated under both without/with PEG. The most effective isolates (DTB4 and DTR30) were identified genetically using 16S rRNA gene. A field experiment was conducted to study the impact of inoculation with DTB4 and DTR30 along with AMF (Glomus clarum, Funneliformis mosseae, and Gigaspora margarita) on the growth and yield of drought-stressed soybeans. Our results showed that the bioinoculant applications improved the growth traits (shoot length, root length, leaf area, and dry weight), chlorophyll content, nutrient content (N, P, and K), nodulation, and yield components (pods number, seeds weight, and grain yield) of soybean plants under drought stress (p ≤ 0.05). Moreover, proline contents were decreased due to the bioinoculant applications under drought when compared to uninoculated treatments. As well as the count of bacteria, mycorrhizal colonization indices, and the activity of soil enzymes (dehydrogenase and phosphatase) were enhanced in the soybean rhizosphere under drought stress. This study's findings imply that using a mixture of bioinoculants may help soybean plants withstand drought stress, particularly during critical growth stages, and that soybean growth, productivity, and soil microbial activity were improved under drought stress.

6.
3 Biotech ; 14(6): 159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770163

ABSTRACT

There is little data, to our knowledge, on the biochemical properties of different Satureja sp. genotypes affected by plant growth regulators (PGR) under temperature stress. A split plot research on the basis of a complete randomized block design with three replicates examining temperature stress (planting dates, 8th of April, May and June) (main factor), and the factorial combination of plant growth regulators (PGR, control (CO), gibberellic acid (GA), fertilization (MI), and amino acid (A)), and genotypes (Khuzestani, Mutika, and Bakhtiari) on plant biochemical properties, was conducted. Plant pigment contents (chlorophyll a, and b and carotenoids (car)), antioxidant activity (catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GP)), and leaf protein were determined. Treatments significantly and differently affected the genotypes performance. PD3 and PD1resulted in significantly higher activity of APX (0.059 U. mg-1) and GP (0.190 U. mg-1), respectively (P ≤ 0.05). Temperature stress significantly affected plant CAT activity (U. mg-1) at PD1 (0.084) and PD3 (0.820). Higher temperature significantly enhanced leaf Pro, MI increased plant APX (0.054) and CAT activities (0.111 U. mg-1) significantly, and GA resulted in the highest and significantly different GP activity (0.186 U. mL-1). Treatments T1 and T3 significantly enhanced Chla and Car content, and MI resulted in significantly higher Chlb content (0.085 mg g-1 leaf fresh weight). Car and CAT are the two most sensitive biochemical traits under temperature stress and can more effectively regulate Satureja growth and activity. It is possible to alleviate temperature stress on Satureja biochemical properties by the tested PGR.

7.
Eur J Pharmacol ; 976: 176665, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38797312

ABSTRACT

OBJECTIVE: Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS: C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1ß, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS: GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1ß in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS: Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.


Subject(s)
Gibberellins , Lipopolysaccharides , Mice, Inbred C57BL , Microglia , NF-kappa B , Sepsis , Animals , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Mice , NF-kappa B/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Gibberellins/pharmacology , Neuroinflammatory Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction/drug effects , Cell Line , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism
8.
Plant Mol Biol ; 114(3): 43, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630371

ABSTRACT

The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.


Subject(s)
Phaseolus , Phaseolus/genetics , GATA Transcription Factors/genetics , Agrobacterium , Amino Acid Sequence , Droughts , Plant Growth Regulators
9.
New Phytol ; 242(6): 2555-2569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594216

ABSTRACT

Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Gene Expression Regulation, Plant , Gibberellins , Protein Binding , Gibberellins/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/growth & development , Flowers/genetics , Proteolysis , Protein Stability , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Proteasome Endopeptidase Complex/metabolism , Hypocotyl/growth & development , Hypocotyl/metabolism , Signal Transduction , Anthocyanins/metabolism , Phosphorylation
10.
Curr Biol ; 34(9): 1967-1976.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626763

ABSTRACT

In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.


Subject(s)
Gibberellins , Gibberellins/metabolism , Oleaceae/genetics , Oleaceae/metabolism , Oleaceae/growth & development , Self-Incompatibility in Flowering Plants/genetics , Genome, Plant , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Heliyon ; 10(7): e27975, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560240

ABSTRACT

Euphorbia lagascae Spreng is a promising emerging oilseed crop, with its seed oil accounting for approximately 50% of the seed weight. Euphorbia oil contains a significant amount of vernolic acid, comprising two-thirds of its composition, which boasts various industrial applications, including acting as a stabilizer-plasticizer and natural dye. However, this species was known to have a high degree of seed-shattering and a low germination rate, which act as two important barriers to large-scale production and exploitation. Therefore, the objective of this study is to determine the genetic control of seed germination and seed-shattering traits in order to develop a reliable pipeline that would be applicable for industries and breeders to select superior E. lagascae lines and design a robust breeding scheme in a short time at reduced labor costs. For this objective, five different wild-type genotypes of E. lagascae that demonstrated high germination potential were crossed with an ethyl methanesulfonate (EMS) mutant genotype that produces non-shattering capsules. The F2 populations from two successful crosses (A and B) were separated into three different treated groups for seed germination evaluation and to study the segregation of 200 individuals per F2 population. The three treatments were: light, gibberellic acid (GA3), and control treatment. Consequently, plants treated with approximately 250 µmol/m2/s of light showed significant improvement in germination up to 75% in cross A and 82.4 % in cross B compared with the control plants and the group treated with 0.05% GA3. According to the chi-square test results, the inheritance pattern of seed germination in response to light treatment follows a 3:1 segregation ratio between germinated and non-germinated seeds, indicating a dominant gene action in the F2 generation. The same conclusion was followed for the shattering trait in the group treated with light, which was also simply inherited as a 3:1 ratio for shattering vs. non-shattering capsules. Our results emphasize the importance and significance of light treatment in producing uniform populations through acceptable germination and shattering resistance of the mutant genotypes of E. lagascae. This is the first report of light treatment that significantly improved seed germination of E. lagascae, which may enhance efforts in the development of this new industrial crop as a feedstock for vernolic acid production.

12.
Plant J ; 118(6): 1907-1921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491869

ABSTRACT

The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Spinacia oleracea , Gibberellins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/physiology , Spinacia oleracea/genetics , Spinacia oleracea/physiology , Spinacia oleracea/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
13.
J Hazard Mater ; 469: 133862, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38432090

ABSTRACT

The precise mechanism behind the association between plants' reactions to cadmium (Cd) stress and brassinosteroid (BR) remains unclear. In the current investigation, Cd stress quickly increased the endogenous BR concentration in the rice roots. Exogenous BR also increased the hemicellulose level in the root cell wall, which in turn increased its capacity to bind Cd. Simultaneously, the transcription level of genes responsible for root Cd absorption was decreased, including Natural Resistance-Associated Macrophage Protein 1/5 (OsNRAMP1/5) and a major facilitator superfamily gene called OsCd1. Ultimately, the increased expression of Heavy Metal ATPase 3 (OsHMA3) and the decreased expression of OsHMA2, which was in charge of separating Cd into vacuoles and translocating Cd to the shoots, respectively, led to a decrease in the amount of Cd that accumulated in the rice shoots. In contrast, transgenic rice lines overexpressing OsGSK2 (a negative regulator in BR signaling) accumulated more Cd, while OsGSK2 RNA interference (RNAi) rice line accumulated less Cd. Furthermore, BR increased endogenous Gibberellic acid (GA) level, and applying GA could replicate its alleviative effect. Taken together, BR decreased Cd accumulation in rice by mediating the cell wall's fixation capacity to Cd, which might relied on the buildup of the GA.


Subject(s)
Cadmium , Gibberellins , Oryza , Cadmium/metabolism , Oryza/genetics , Oryza/metabolism , Brassinosteroids , Cell Wall/metabolism , Plant Roots/metabolism
14.
Plant Signal Behav ; 19(1): 2331358, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38513064

ABSTRACT

Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in Nicotiana benthamiana. The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock. In addition, to try discussing the differences in the degree and speed of each event during the grafting process between intra- and inter-family grafting by determining the concentration and accumulation timing of plant hormones in the graft junctions, we performed hormonome analysis of graft junctions of intra-family grafted plants with N. benthamiana as scion and Solanum lycopersicum as rootstock (Nb/Sl) and inter-family grafted plants with N. benthamiana as scion and Arabidopsis thaliana as rootstock (Nb/At), using the ability of Nicotiana species to graft with many plant species. The results revealed that ABA and CK showed different accumulation timings; IAA, JA, and salicylic acid (SA) showed similar accumulation timings, while different accumulated concentrations in the graft junctions of Nb/Sl and Nb/At. This information is important for understanding the molecular mechanisms of plant hormones in the grafting process and the differences in molecular mechanisms between intra- and inter-family grafting.


Subject(s)
Arabidopsis , Solanum lycopersicum , Plant Growth Regulators , Nicotiana , Abscisic Acid
15.
Plant Biotechnol J ; 22(7): 1881-1896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38346083

ABSTRACT

Plants grow rapidly for maximal production under optimal conditions; however, they adopt a slower growth strategy to maintain survival when facing environmental stresses. As salt stress restricts crop architecture and grain yield, identifying genetic variations associated with growth and yield responses to salinity is critical for breeding optimal crop varieties. OsDSK2a is a pivotal modulator of plant growth and salt tolerance via the modulation of gibberellic acid (GA) metabolism; however, its regulation remains unclear. Here, we showed that OsDSK2a can be phosphorylated at the second amino acid (S2) to maintain its stability. The gene-edited mutant osdsk2aS2G showed decreased plant height and enhanced salt tolerance. SnRK1A modulated OsDSK2a-S2 phosphorylation and played a substantial role in GA metabolism. Genetic analysis indicated that SnRK1A functions upstream of OsDSK2a and affects plant growth and salt tolerance. Moreover, SnRK1A activity was suppressed under salt stress, resulting in decreased phosphorylation and abundance of OsDSK2a. Thus, SnRK1A preserves the stability of OsDSK2a to maintain plant growth under normal conditions, and reduces the abundance of OsDSK2a to limit growth under salt stress. Haplotype analysis using 3 K-RG data identified a natural variation in OsDSK2a-S2. The allele of OsDSK2a-G downregulates plant height and improves salt-inhibited grain yield. Thus, our findings revealed a new mechanism for OsDSK2a stability and provided a valuable target for crop breeding to overcome yield limitations under salinity stress.


Subject(s)
Oryza , Plant Proteins , Protein Serine-Threonine Kinases , Salt Tolerance , Salt Tolerance/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation, Plant/drug effects , Gibberellins/metabolism , Genetic Variation , Plants, Genetically Modified/genetics
16.
Environ Sci Pollut Res Int ; 31(11): 16972-16985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329668

ABSTRACT

Given the adverse impacts of heavy metals on plant development and physiological processes, the present research investigated the protective role of indole-3-acetic acid (IAA) and gibberellic acid (GA3) against cadmium (Cd)-induced injury in chickpea seedlings. Therefore, seeds germinated for 6 days in a medium containing 200 µM Cd alone or combined with 10 µM GA3 or 10 µM IAA. Both GA3 and IAA mitigated Cd-imposed growth delays in roots and shoots (80% and 50% increase in root and shoot length, respectively). This beneficial effect was accompanied by a significant reduction in Cd2+ accumulation in both roots (74% for IAA and 38% for GA3) and shoots (68% and 35%, respectively). Furthermore, these phytohormones restored the cellular redox state by reducing the activity of NADPH oxidase and downregulating the transcription level of RbohF and RbohD genes. Likewise, hydrogen peroxide contents were reduced by GA3 and IAA supply. Additionally, GA3 and IAA countered the Cd-induced reduction in total phenols, flavonoids, and reducing sugars in both roots and shoots. The exogenous effectors enhanced the activities of catalase, ascorbate peroxidase, and thioredoxin, as well as the corresponding gene expressions. Interestingly, adding GA3 and IAA to the Cd-contaminated germination media corrected the level of calcium (Ca2+) ion within seedling tissues. This effect coincided with the upregulation of key genes associated with stress sensing and signal transduction, including auxin-binding protein (ABP19a), mitogen-activated protein kinase (MAPK2), calcium-dependent protein kinase (CDPK1), and calmodulin (CaM). Overall, the current results suggest that GA3 and IAA sustain the Ca2+ signaling pathway, resulting in metal phytotoxicity relief. Amendment of agricultural soils contaminated with heavy metals with GA3 or IAA could represent an effective practice to improve crop yield.


Subject(s)
Cicer , Seedlings , Gibberellins/pharmacology , Gibberellins/metabolism , Cadmium/metabolism , Cicer/metabolism , Acetic Acid/metabolism , Calcium Signaling , Indoleacetic Acids/metabolism , Plant Roots/metabolism
17.
Plant Physiol Biochem ; 207: 108424, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38335888

ABSTRACT

Gibberellic acid (GA) plays important roles in diverse biological processes in plants. However, its function in rice (Oryza sativa) resistance to saline-alkaline (SAK) stress is unclear. This study showed that SAK stimuli changed GA signaling gene expression levels. Genetic analyses using the mutants of key GA signaling regulators, Slender rice 1 (SLR1) and Dwarf 1(D1), demonstrated that SLR1 negatively, while D1 positively regulated the resistance of rice to SAK stress, suggesting that the GA signaling positively regulates the resistance of rice to SAK. Further analyses revealed that SLR1 interacted with and inhibited the transcription activation activity of IDD10 and bZIP23. Furthermore, IDD10 interacted with bZIP23 to activate Ammonium transporter 1;2 (AMT1;2), and slr1, IDD10 OX and bZIP23 OX accumulated more ammonium (NH4+), while idd10 and bzip23 accumulated less NH4+ than the wild-type (WT). In addition, the bzip23 mutant was more sensitive to SAK, while bZIP23 OX was less sensitive compared with the WT, suggesting that bZIP23 positively regulates the resistance of rice to SAK. These findings demonstrate that GA signaling promoted rice's SAK resistance by regulating NH4+ uptake through the SLR1-IDD10-bZIP23 pathway.


Subject(s)
Ammonium Compounds , Oryza , Ammonium Compounds/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Gibberellins/pharmacology , Gene Expression Regulation, Plant
18.
Synth Syst Biotechnol ; 9(1): 159-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38333054

ABSTRACT

Gibberellic acid (GA3) is a vital plant growth hormone widely used in agriculture. Currently, GA3 production relies on liquid fermentation by the filamentous fungus Fusarium fujikuroi. However, the lack of an effective selection marker recycling system hampers the application of metabolic engineering technology in F. fujikuroi, as multiple-gene editing and positive-strain screening still rely on a limited number of antibiotics. In this study, we developed a strategy using pyr4-blaster and CRISPR/Cas9 tools for recycling orotidine-5'-phosphate decarboxylase (Pyr4) selection markers. We demonstrated the effectiveness of this method for iterative gene integration and large gene-cluster deletion. We also successfully improved GA3 titers by overexpressing geranylgeranyl pyrophosphate synthase and truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase, which rewired the GA3 biosynthesis pathway. These results highlight the efficiency of our established system in recycling selection markers during iterative gene editing events. Moreover, the selection marker recycling system lays the foundation for further research on metabolic engineering for GA3 industrial production.

19.
Planta ; 259(2): 40, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265531

ABSTRACT

MAIN CONCLUSION: Genetic loci, particularly those with an effect in the independent panel, could be utilised to further reduce LMA expression when used with favourable combinations of genes known to affect LMA. Late maturity α-amylase (LMA) is a grain quality defect involving elevated α-amylase within the aleurone of wheat (Triticum aestivum L.) grains. The genes known to affect expression are the reduced height genes Rht-B1 (chromosome 4B) and Rht-D1 (chromosome 4D), and an ent-copalyl diphosphate synthase gene (LMA-1) on chromosome 7B. Other minor effect loci have been reported, but these are poorly characterised and further genetic understanding is needed. In this study, twelve F4-derived populations were created through single seed descent, genotyped and evaluated for LMA. LMA-1 haplotype C and the Rht-D1b allele substantially reduced LMA expression. The alternative dwarfing genes Rht13 and Rht18 had no significant effect on LMA expression. Additional quantitative trait loci (QTL) were mapped at 16 positions in the wheat genome. Effects on LMA expression were detected for four of these QTL in a large independent panel of Australian wheat lines. The QTL detected in mapping populations and confirmed in the large independent panel provide further opportunity for selection against LMA, especially if combined with Rht-D1b and/or favourable haplotypes of LMA-1.


Subject(s)
Triticum , alpha-Amylases , Australia , Quantitative Trait Loci , Alleles
20.
Aquat Toxicol ; 267: 106807, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183776

ABSTRACT

Gibberellic acid (GA3), one of the most plant growth stimulator, is widely applied in agricultural regions and in beer industry. However, GA3 residue remained in soil and water can cause toxicity to all organisms. In this study, we investigated the mechanisms of GA3-induced hepatic injury in gibel carp (Carassius auratus gibelio). We found that GA3 exposure caused oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis. The gibel carp exposed to GA3 exhibited significant alteration in erythrocyte nuclei. GA3 induced liver damage, as indicated by increasing the aminopherase activities. GA3 led to oxidative stress by increasing malondialdehyde content and decreasing the activities of CAT and GPx. GA3 stimulated ERS and increased the expression of grp78, perk, eif2s1α, chop, atf4, ire1α, xbp1, and atf6. Additionally, GA3 down-regulated the level of anti-apoptotic gene Bcl-2 and up-regulated the levels of pro-apoptotic genes bax and caspase-3. Overall results demonstrated that GA3 caused hepatic injury in gibel carp by increasing oxidative stress, ERS, and apoptosis.


Subject(s)
Gibberellins , Goldfish , Water Pollutants, Chemical , Animals , Goldfish/metabolism , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Water Pollutants, Chemical/toxicity , Liver/metabolism , Oxidative Stress , Apoptosis , Endoplasmic Reticulum Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...