Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.091
Filter
1.
Front Plant Sci ; 15: 1367121, 2024.
Article in English | MEDLINE | ID: mdl-39086912

ABSTRACT

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3784-3795, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099352

ABSTRACT

Based on high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS~E) and molecular docking technique, bitter compounds of Ginkgo biloba extract(GBE) were characterized, and their relationship with bitter efficacy was investigated. Firstly, UPLC-Q-TOF-MS~E was used for qualitative analysis of GBE components, and 60 chemical components were identified. These chemical components were molecular-docked with bitter receptors, and 26 bitter substances were selected, mainly flavonoids. Secondly, sensory and electronic tongue bitterness evaluation techniques were used to verify that total flavones of GBE were the main bitter substances, which was consistent with the molecular docking results. Finally, network pharmacology was used to predict and analyze bitter substances. The relationship between the target of bitter substance and bitter effect was explored. The key targets of bitter substances are CYP2B6, ALOX15, and PTGS2, etc., and bitter substances may exert a bitter efficacy by ac-ting on related disease targets, indicating that bitter substances of GBE are the material basis of the bitter effect. In summary, the study indicated that the molecular docking technique had a guiding effect on the screening of bitter substances in traditianal Chinese medicine(TCM), and bitter substances of GBE had a bitter efficacy. It provides ideas and references for the study of the "taste-efficacy relationship" of TCM in the future.


Subject(s)
Ginkgo biloba , Molecular Docking Simulation , Plant Extracts , Tandem Mass Spectrometry , Taste , Ginkgo biloba/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Male , Ginkgo Extract
3.
Phytother Res ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972848

ABSTRACT

Mild cognitive impairment poses an increasing challenge to middle-aged and elderly populations. Traditional Chinese medicinal herbs like Cistanche tubulosa and Ginkgo biloba (CG) have been proposed as potential agents to improve cognitive and memory functions. A randomized controlled trial involving 100 Chinese middle-aged and elderly participants was conducted to investigate the potential synergistic effects of CG on cognitive function in individuals at risk of neurodegenerative diseases. Over 90 days, both CG group and placebo group received two tablets daily, with each pair of CG tablets containing 72 mg echinacoside and 27 mg flavonol glycosides. Cognitive functions were assessed using multiple scales and blood biomarkers were determined at baseline, Day 45, and Day 90. The CG group exhibited significant improvements in the scores of Mini-Mental State Examination (26.5 at baseline vs. 27.1 at Day 90, p < 0.001), Montreal Cognitive Assessment (23.4 at baseline vs. 25.3 at Day 90, p < 0.001), and World Health Organization Quality of Life (81.6 at baseline vs. 84.2 at Day 90, p < 0.001), all surpassing scores in placebo group. Notably, both the Cognitrax matrix test and the Wechsler Memory Scale-Revised demonstrated enhanced memory functions, including long-term and delayed memory, after CG intervention. Moreover, cognitive-related blood biomarkers, including total tau, pT181, pS199, pT231, pS396, and thyroid-stimulating hormone, significantly decreased, whereas triiodothyronine and free triiodothyronine significantly increased. No treatment-related adverse events were reported, and routine blood and urine tests remained stable. These findings indicated that CG supplementation could potentially serve as an effective supplementary solution for enhancing cognitive and memory functions.

4.
Gene ; 928: 148800, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067545

ABSTRACT

ETHYLENE-INSENSITIVE3 (EIN3) or EIN3-Like (EIL) proteins, play critical roles in integrating ethylene signaling and physiological regulation in plants by modulating the expression of various downstream genes, such as ethylene-response factors (ERFs). However, little is known about the characteristics of EIN3/EILs in the gymnosperm Ginkgo biloba. In the present study, a genome-wide comparative analysis of Ginkgo EIN3/EIL gene family was performed with those from an array of species, including bryophytes (Physcomitrella patens), gymnosperms (Cycas panzhihuaensis), and angiosperms (Arabidopsis thaliana, Gossypium raimondii, Gossypium hirsutum, Oryza sativa, and Brachypodium distachyon). Within the constructed phylogenetic tree for the 53 EIN3/EILs identified, 5 GbEILs from G. biloba, 2 PpEILs from P. patens, and 3 CpEILs from C. panzhihuaensis were assigned to one cluster, suggesting that their derivation occurred after the split of their ancestors and angiosperms. Although considerable divergence accumulated in amino acid sequences along with the evolutionary process, the specific EIN3_DNA-binding domains were evolutionarily conserved among the 53 EIN3/EILs. Collinearity analysis indicated that whole-genome or segmental duplication and subsequent purifying selection might have prompted the generation and evolution of EIN3/EIL multigene families. Based on the expression patterns of five GbEILs at the four developmental stages of Ginkgo ovules, one GbEIL gene (Gb_03292) was further investigated for its role in mediating ethylene signaling. The functional activity of Gb_03292 was closely related to ethylene signaling, as it complemented the triple response via ectopic expression in ein3eil1 double mutant Arabidopsis. Additionally, GbEIL likely modulates the expression of a Ginkgo ERF (Gb_15517) by directly binding to its promoter. These results demonstrated that the GbEIL gene could have participated in mediating ethylene signal transduction during ovule development in G. biloba. The present study also provides insights into the conservation of ethylene signaling across the gymnosperm G. biloba and angiosperm species.

5.
Front Pharmacol ; 15: 1374482, 2024.
Article in English | MEDLINE | ID: mdl-39021830

ABSTRACT

Objective: To conduct a meta-analysis of the effectiveness and safety of ginkgo biloba extract combined with donepezil hydrochloride vs. donepezil for the treatment of vascular dementia (VaD). Methods: Four English databases (PubMed, EMBASE, Web of Science, Cochrane Library) and four Chinese databases [the China National Knowledge Infrastructure Wanfang DATA, the Chongqing VIP Database (VIP), China Biomedical Database (CBM)] were manually searched for literature published from dates of the inception of the databases to September 2023. The randomized controlled trials (RCTs) of ginkgo biloba extract with donepezil hydrochloride vs. donepezil for the treatment of VaD were included. Relevant literature was screened, and the data in the included studies were extracted for quality assessment according to the Risk of bias tool. Results: A total of 1,309 participants were enrolled in the 15 RCTs. Of these, 656 participants were in the experimental group (ginkgo biloba extract combined with donepezil) and 653 participants were in the control group (donepezil).The results showed that combination therapy was superior to donepezil alone, and there were statistically significant differences in several outcomes including RR in change for total effective rate (1.28, 95% confidence intervals 1.20, 1.38, p < 0.001), MD in change for Mini-Mental State Examination score (2.98, 95%CI 2.31, 3.65, p < 0.001), Barthel Index score (8.55,95%CI 1.11, 15.99, p = 0.024), Activity of Daily Living Scale (ADL)score (10.11,95% CI 7.16,13.07,p < 0.001). Conclusion: Ginkgo biloba extract combined with donepezil dramatically improved the total effective rate, MMSE, BI and ADL scores, and decreased homocysteine (HCY), plasma viscosity (PV), whole blood viscosity at high cut (BVH) and whole blood viscosity at low cut (BVL) in VaD patients, while the effect on mean flow velocity and pulse index (PI) of middle cerebral artery (MCA) is not obvious. However, more relevant high-quality RCTs are needed to validate these results. Systematic Review Registration: Identifier CRD42023474678.

6.
Food Chem ; 459: 140443, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003861

ABSTRACT

To develop functional, sustainable and eco-friendly active packaging materials as alternatives to plastic films, we successfully prepared Ginkgo biloba leaf polysaccharide-stabilized selenium nanomaterials (Se-GBLP). Se-GBLP with glutathione peroxidase-like activity could efficiently remove harmful reactive oxygen species. As a functional additive, Se-GBLP was incorporated into degradable chitosan (CS) to fabricate CS/Se-GBLP films. The addition of Se-GBLP improved the mechanical properties, UV-visible light barrier performance, water vapor permeability, and antioxidant activity of the films. Preservation experiments demonstrated CS/Se-GBLP film could maintain quality and prolong the storage time of bananas and cherry tomatoes. It was the first time to use selenium-based nanozyme for fruit preservation. This work offered a cost-effective solution to reduce post-harvest losses, increasing sustainability and profitability. Future research should focus on more factors affecting freshness such as variety, maturity, harvest and storage conditions to improve preservation, as well as on the material's safety concern and environmental impact.

7.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005007

ABSTRACT

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Subject(s)
Countercurrent Distribution , Ginkgo biloba , Plant Extracts , Plant Leaves , Solvents , Ginkgo biloba/chemistry , Solvents/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Water/chemistry , Methanol/chemistry , Acetates/chemistry , Ginkgo Extract
8.
J Sep Sci ; 47(14): e2400342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031453

ABSTRACT

In this study, a ligand fishing method for the screening of α-glucosidase inhibitors from Ginkgo biloba leaf was established for the first time using α-glucosidase immobilized on the magnetic metal-organic framework. The immobilized α-glucosidase exhibited enhanced resistance to temperature and pH, as well as good thermal stability and reusability. Two ligands, namely quercitrin and quercetin, were screened from Ginkgo biloba leaf and identified by ultra-high performance liquid chromatography-tandem mass spectrometry. The half-maximal inhibitory concentration values for quercitrin and quercetin were determined to be 105.69 ± 0.39 and 83.49 ± 0.79 µM, respectively. Molecular docking further confirmed the strong inhibitory effect of these two ligands. The proposed approach in this study demonstrates exceptional efficiency in the screening of α-glucosidase inhibitors from complex natural medicinal plants, thus exhibiting significant potential for the discovery of antidiabetic compounds.


Subject(s)
Enzymes, Immobilized , Ginkgo biloba , Glycoside Hydrolase Inhibitors , Metal-Organic Frameworks , Plant Leaves , alpha-Glucosidases , Ginkgo biloba/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Metal-Organic Frameworks/chemistry , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/metabolism , Molecular Docking Simulation , Drug Evaluation, Preclinical , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin/chemistry , Quercetin/analysis , Quercetin/pharmacology , Quercetin/analogs & derivatives , Chromatography, High Pressure Liquid
9.
Plants (Basel) ; 13(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891279

ABSTRACT

In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas.

10.
Plants (Basel) ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891310

ABSTRACT

Ginkgo biloba L. is a rare dioecious species that is valued for its diverse applications and is cultivated globally. This study aimed to develop a rapid and effective method for determining the sex of a Ginkgo biloba. Green and yellow leaves representing annual growth stages were scanned with a hyperspectral imager, and classification models for RGB images, spectral features, and a fusion of spectral and image features were established. Initially, a ResNet101 model classified the RGB dataset using the proportional scaling-background expansion preprocessing method, achieving an accuracy of 90.27%. Further, machine learning algorithms like support vector machine (SVM), linear discriminant analysis (LDA), and subspace discriminant analysis (SDA) were applied. Optimal results were achieved with SVM and SDA in the green leaf stage and LDA in the yellow leaf stage, with prediction accuracies of 87.35% and 98.85%, respectively. To fully utilize the optimal model, a two-stage Period-Predetermined (PP) method was proposed, and a fusion dataset was built using the spectral and image features. The overall accuracy for the prediction set was as high as 96.30%. This is the first study to establish a standard technique framework for Ginkgo sex classification using hyperspectral imaging, offering an efficient tool for industrial and ecological applications and the potential for classifying other dioecious plants.

11.
Curr Neuropharmacol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38919004

ABSTRACT

BACKGROUND: Excessive free radicals are implicated in the pathophysiology of tardive dyskinesia (TD), and Ginkgo biloba extract (EGb761) scavenges free radicals, thereby enhancing antioxidant enzymes such as mitochondrial manganese superoxide dismutase (MnSOD). This study examined whether EGb761 treatment would improve TD symptoms and increase MnSOD activity, particularly in TD patients with specific MnSOD Val-9Ala genotype. METHODS: An EGb761 (240 mg/day) 12-week double-blind clinical trial with 157 TD patients was randomized. The severity of TD was measured by the Abnormal Involuntary Movement Scale (AIMS) and plasma MnSOD activity was assayed before and after 12 weeks of treatment. Further, in an expanded sample, we compared MnSOD activity in 159 TD, 227 non-TD and 280 healthy controls, as well as the allele frequencies and genotypes for the MnSOD Ala-9Val polymorphism in 352 TD, 486 non-TD and 1150 healthy controls. RESULTS: EGb761 significantly reduced TD symptoms and increased MnSOD activity in TD patients compared to placebo (both p < 0.01). Moreover, we found an interaction between genotype and treatment response (p < 0.001). Furthermore, in the EGb761 group, patients carrying the Ala allele displayed a significantly lower AIMS total score than patients with the Val/Val genotype. In addition, MnSOD activity was significantly lower at baseline in TD patients compared with healthy controls or non-TD patients. CONCLUSION: EGb761 treatment enhanced low MnSOD activity in TD patients and produced greater improvement in TD symptoms in patients with the Ala allele of the MnSOD Ala-9Val polymorphism.

12.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892364

ABSTRACT

This report describes major pathomechanisms of disease in which the dysregulation of host inflammatory processes is a major factor, with cardiovascular disease (CVD) as a primary model, and reviews strategies for countermeasures based on synergistic interaction between various agents, including drugs and generally regarded as safe (GRAS) natural medical material (NMM), such as Ginkgo biloba, spice phytochemicals, and fruit seed flavonoids. The 15 well-defined CVD classes are explored with particular emphasis on the extent to which oxidative stressors and associated ischemia-reperfusion tissue injury contribute to major symptoms. The four major categories of pharmaceutical agents used for the prevention of and therapy for CVD: statins, beta blockers (ß-blockers), blood thinners (anticoagulants), and aspirin, are presented along with their adverse effects. Analyses of major cellular and molecular features of drug- and NMM-mediated cardioprotective processes are provided in the context of their development for human clinical application. Future directions of the evolving research described here will be particularly focused on the characterization and manipulation of calcium- and calcineurin-mediated cascades of signaling from cell surface receptors on cardiovascular and immune cells to the nucleus, with the emergence of both protective and pathological epigenetic features that may be modulated by synergistically-acting combinations of drugs and phytochemicals in which phytochemicals interact with cells to promote signaling that reduces the effective dosage and thus (often) toxicity of drugs.


Subject(s)
Cardiovascular Diseases , Phytochemicals , Humans , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/metabolism , Animals
13.
Iran J Basic Med Sci ; 27(8): 959-966, 2024.
Article in English | MEDLINE | ID: mdl-38911245

ABSTRACT

Objectives: Acute pancreatitis (AP) is an abrupt inflammatory condition characterized by a storm of inflammatory cytokines leading to high morbidity and mortality. The current study aimed to examine the efficacy of Ginkgo biloba extract EGb 761 (GBE) in the treatment of L-arginine-induced AP and its associated lung injury. Materials and Methods: Forty rats were randomly assigned into four groups. The normal group received only saline intraperitoneally while the other groups received two intraperitoneal L-arginine injections (250 mg/100 g b.wt) separated by a 1-hour interval to provoke AP. GBE (200 and 400 mg/kg/day, PO) was administered for 2 weeks post-induction of pancreatitis. Sera and pancreatic tissues were isolated. Results: The outcome of the present study revealed that GBE ameliorated the elevated levels of serum amylase, lipase, and pancreatic inflammatory mediators viz., tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase P38 (MAPK-P38), c-Jun N-terminal kinase 1 (JNK1), and nuclear factor-kappa B (NF-κB). Moreover, GBE restored the pancreatic gene expression of Toll-like receptor 4 (TLR4) and prostatic acid phosphatase-2 (PAP-2). Pancreatic and lung histopathological examinations confirmed the aforementioned parameters. Conclusion: GBE interfered with the mechanistic pathway of L-arginine-induced acute pancreatic and its associated lung injury. Due to its anti-inflammatory properties, GBE can be used as a novel therapeutic candidate for the treatment of AP through down-regulating TLR-4/MAPK-p38/JNK and MAPK- p38/NF-κB signaling cascades.

14.
Plant Physiol Biochem ; 212: 108754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824693

ABSTRACT

Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.


Subject(s)
Ginkgo biloba , Terpenes , Ginkgo biloba/metabolism , Ginkgo biloba/genetics , Terpenes/metabolism , Gene Expression Regulation, Plant
15.
EPMA J ; 15(2): 163-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841620

ABSTRACT

Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.

16.
Physiol Rep ; 12(11): e16050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839736

ABSTRACT

In posterior spine surgery, retractors exert pressure on paraspinal muscles, elevating intramuscular pressure and compromising blood flow, potentially causing muscle injury during ischemia-reperfusion. Ginkgo biloba extract (EGb 761), known for its antioxidant and free radical scavenging properties and its role in treating cerebrovascular diseases, is investigated for its protective effects against muscle ischemia-reperfusion injury in vitro and in vivo. Animals were randomly divided into the control group, receiving normal saline, and experimental groups, receiving varying doses of EGb761 (25/50/100/200 mg/kg). A 2-h hind limb tourniquet-induced ischemia was followed by reperfusion. Blood samples collected pre-ischemia and 24 h post-reperfusion, along with muscle tissue samples after 24 h, demonstrated that EGb761 at 1000 µg/mL effectively inhibited IL-6 and TNF-α secretion in RAW 264.7 cells without cytotoxicity. EGb761 significantly reduced nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and increased glutathione (GSH) levels compared to the control after 24 h. Muscle tissue sections revealed more severe damage in the control group, indicating EGb761's potential in mitigating inflammatory responses and oxidative stress during ischemia-reperfusion injury, effectively protecting against muscle damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ginkgo biloba , Hindlimb , Muscle, Skeletal , Plant Extracts , Reperfusion Injury , Animals , Ginkgo biloba/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Hindlimb/blood supply , Male , Rats , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ginkgo Extract
17.
Am J Chin Med ; 52(4): 1053-1086, 2024.
Article in English | MEDLINE | ID: mdl-38904550

ABSTRACT

Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.


Subject(s)
Ginkgo biloba , Nervous System Diseases , Neuroprotective Agents , Plant Extracts , Plant Leaves , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , Nervous System Diseases/drug therapy , Plant Leaves/chemistry , Phytotherapy , Ginkgo Extract
18.
Food Chem ; 456: 139979, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852441

ABSTRACT

Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.


Subject(s)
Bacillus subtilis , Fermentation , Flavonoids , Ginkgo biloba , Ginkgolides , Saccharomyces cerevisiae , Salicylates , Taste , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Ginkgo biloba/microbiology , Salicylates/metabolism , Salicylates/analysis , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Humans , Ginkgolides/metabolism , Ginkgolides/analysis , Light , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Food Irradiation
19.
EFSA J ; 22(5): e8798, 2024 May.
Article in English | MEDLINE | ID: mdl-38764478

ABSTRACT

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of tinctures obtained from the dried leaves of Ginkgo biloba L. (ginkgo tinctures) when used as sensory additives. The tinctures are water/ethanol solutions with a dry matter content of 5.7% (tincture A) and 3.0% (tincture B). The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additives under assessment are safe for the target species at the following concentrations in complete feed: (i) ginkgo tincture A at 240 mg/kg for horses and 750 mg/kg for dogs; (ii) ginkgo tincture B at 600 mg/kg for horses and 50 mg/kg for all other animal species. No safety concern would arise for the consumer from the use of ginkgo tinctures up to the maximum proposed use level in feed for the target species. The tinctures should be considered as irritants to skin and eyes, and as dermal and respiratory sensitisers. The use of ginkgo tinctures at the proposed use levels in feed for the target species is not considered to be a risk to the environment. While the available data indicate that Ginkgo preparations have a distinctive flavour profile, there is no evidence that ginkgo tinctures would impart flavour to a food or feed matrix. Therefore, the FEEDAP Panel cannot conclude on the efficacy of the additives.

20.
J Food Sci ; 89(7): 4093-4108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783591

ABSTRACT

Ginkgo biloba leaves (GBLs) contain high phytoconstituents, but ginkgolic acids (GAs, the main toxic compound in GBLs) have limited its applications. Processing Ginkgo biloba dark tea (GBDT) using fixation technology could decrease the toxic compounds; retain flavonoids, ginkgolides, and bilobalide; and improve the product quality. For the first time, various thermal fixations (hot air fixation [HAF], iron pot fixation [IPF], and boiled water fixation [BWF]) followed by rolling, fermentation, and drying were applied to produce GBDT. A comprehensive analysis of the toxicants (GAs), main bioactive compounds (ginkgolides and bilobalide, flavonoids, antioxidants, and phenolic profiles), and product qualities (moisture content, reducing sugar [RS], free amino acids [FAAs], enzyme activity, color properties, antioxidant capacity, etc.) were evaluated. The results revealed that thermal fixations BWF and HAF significantly reduced the GA contents (41.1%-34.6%). Most terpene lactones showed significant differences in control, IPF, and HAF. The HAF had lower total flavonoid content (TFC) than BWF and IPF. The control group (unfixated) had the highest toxic components (GA), terpene trilactones, and TFC compared with various fixations. Adding different fixations to rolling, fermentation, and drying had various impacts on GBDT, and principal component analysis supported the results. Among four thermal fixations, HAF yielded the best results in RS, FAA, total phenolic content, and antioxidant activities, while IPF had the highest TFC. BWF had the lowest content for GA. In conclusion, HAF (6) was chosen as the best technique for producing GBDT since it preserved GBDT's bioactive components while lowering its toxic components.


Subject(s)
Antioxidants , Flavonoids , Ginkgo biloba , Ginkgolides , Phenols , Plant Leaves , Salicylates , Ginkgo biloba/chemistry , Ginkgolides/analysis , Ginkgolides/pharmacology , Salicylates/analysis , Salicylates/pharmacology , Plant Leaves/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Phenols/analysis , Flavonoids/analysis , Hot Temperature , Plant Extracts/pharmacology , Plant Extracts/chemistry , Food Handling/methods , Cyclopentanes/pharmacology , Fermentation , Tea/chemistry , Furans
SELECTION OF CITATIONS
SEARCH DETAIL
...