Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
J Ethnopharmacol ; 334: 118531, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971343

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY: SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS: Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS: The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION: Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.

2.
Nat Prod Res ; : 1-8, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949646

ABSTRACT

Recent research has indicated that Panax notoginseng saponins (PNS) extracted from the radix of Panax notoginseng (Burkill) F. H. Chen exert antidepressant effects. This study aimed to assess the antidepressive effects of ginsenoside Rg1 and PNS in a depression model induced by chronic unpredictable mild stress (CUMS). Over a period of three weeks, rats were administered ginsenoside Rg1 at a dose of 30 mg/kg and PNS at dosages ranging from 100 to 200 mg/kg body weight per day. To assess how ginsenoside Rg1 and PNS influence depression-like behaviours in rats, various assessments were conducted, including coat state evaluation, forced swim test, and elevated plus maze test. The levels of cortisol and testosterone in serum samples were analysed using the liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method. LC-ESI-MS/MS method provides precise and accurate results. The lower limit of quantification values for cortisol and testosterone were determined as 100 and 2 pg/mL, respectively. Our data demonstrated that both ginsenoside Rg1 and PNS significantly reversed depression-like behaviour in rats by improving coat condition, reducing immobility time in the forced swim test, and increasing time spent in the open arms of the elevated plus maze test. Furthermore, ginsenoside Rg1 and PNS exhibited a regulatory effect on cortisol and testosterone levels in plasma. These findings suggest that ginsenoside Rg1 and PNS may be potential antidepressants in clinical treatment.

3.
Adv Sci (Weinh) ; : e2402114, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896802

ABSTRACT

Spinal cord injury (SCI) is a severe neurological condition that frequently leads to significant sensory, motor, and autonomic dysfunction. This study sought to delineate the potential mechanistic underpinnings of extracellular vesicles (EVs) derived from ginsenoside Rg1-pretreated neuronal cells (Rg1-EVs) in ameliorating SCI. These results demonstrated that treatment with Rg1-EVs substantially improved motor function in spinal cord-injured mice. Rg1-EVs enhance microglial polarization toward the M2 phenotype and repressed oxidative stress, thereby altering immune responses and decreasing inflammatory cytokine secretion. Moreover, Rg1-EVs substantially diminish reactive oxygen species accumulation and enhanced neural tissue repair by regulating mitochondrial function. Proteomic profiling highlighted a significant enrichment of MYCBP2 in Rg1-EVs, and functional assays confirmed that MYCBP2 knockdown counteracted the beneficial effects of Rg1-EVs in vitro and in vivo. Mechanistically, MYCBP2 is implicated in the ubiquitination and degradation of S100A9, thereby promoting microglial M2-phenotype polarization and reducing oxidative stress. Overall, these findings substantiated the pivotal role of Rg1-EVs in neuronal protection and functional recovery following SCI through MYCBP2-mediated ubiquitination of S100A9. This research offers novel mechanistic insights into therapeutic strategies against SCI and supports the clinical potential of Rg1-EVs.

4.
J Alzheimers Dis ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38905042

ABSTRACT

Background: Presenilin (PSEN, PS) is essential for γ-secretase function, and mutations can disrupt amyloid-ß (Aß) production in familial Alzheimer's disease. Targeting γ-secretase is complex due to its broad involvement in physiological processes. Objective: Our aim was to create a novel knockin (KI) mouse model expressing PSEN1 D385A mutation and investigate the efficacy of a Geniposide and Ginsenoside Rg1 combination (NeuroProtect modified formula, NP-2) in restoring γ-secretase activity. Methods: Using gene manipulation, we established the PS1 D385A KI mouse model and confirmed the mutation, mRNA, and protein levels using Southern blotting, northern blotting, and western blotting, respectively. In vitro γ-secretase assay was conducted to measure γ-secretase activity, while histological analyses examined neurogenesis effects. NP-2 administration evaluated its impact on γ-secretase activity. Results: The PS1 D385A KI homozygotes displayed severe cerebral hemorrhage, postnatal lethality, developmental disorders, reduced proliferation of neural progenitor cells, and disrupted γ-secretase function. The mutation abolished PS1 protein self-shearing, leading to compromised γ-secretase activity. NP-2 intervention effectively restored γ-secretase activity in the heterozygous mice. Conclusions: PS1 D385A mutant disrupted PS1 protein self-cleaving, impairing γ-secretase activity in KI mice. NP-2 restored γ-secretase function, offering potential for novel AD treatment strategies despite the challenges posed by γ-secretase's complex role in physiological processes.

5.
J Agric Food Chem ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855973

ABSTRACT

Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.

6.
Acta Pharmacol Sin ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937576

ABSTRACT

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

7.
Heliyon ; 10(9): e29906, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720740

ABSTRACT

Ginsenoside Rg1 (Rg1), a monomer saponin component, is one of the components with the highest content in total saponins of Panaxnotoginseng. It had various pharmacological effects. The bioavailability of oral tablets is only 1-20 %, and it is eliminated quickly in the blood. The development of new dosage forms and new routes of administration of ginsenoside Rg1 with sustained release and high bioavailability has become a significant problem to be solved. The Rg1 liposomes study used a thin film dispersion ultrasound method for its preparation. This study focused the pharmacokinetic parameters of ginsenoside Rg1 liposomes in rats through the lung perfusion method. Ginsenoside Rg1 liposomes were round and uniform in shape, the particle size was 2-3 µm, and the encapsulation efficiency of ginsenoside Rg1 liposome was 51.2 %. Results showed that, after pulmonary administration of ginsenoside Rg1, the time of ginsenoside Rg1 detected by Rg1 liposomes was longer than that of Rg1 solution, the relative bioavailability of ginsenoside Rg1 liposome lung administration AUC liposome/AUC solution = 122.67 %. These results provided the scientific theoretical and experimental basis for further development of new dosage forms and new routes of administration of ginsenoside Rg1.

8.
Pharmaceutics ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38794255

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. METHODS: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. RESULTS: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. CONCLUSIONS: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.

9.
World J Stem Cells ; 16(5): 591-603, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817329

ABSTRACT

BACKGROUND: Aplastic anemia (AA) presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells, with the current therapeutic options being notably limited. AIM: To assess the therapeutic potential of ginsenoside Rg1 on AA, specifically its protective effects, while elucidating the mechanism at play. METHODS: We employed a model of myelosuppression induced by cyclophosphamide (CTX) in C57 mice, followed by administration of ginsenoside Rg1 over 13 d. The investigation included examining the bone marrow, thymus and spleen for pathological changes via hematoxylin-eosin staining. Moreover, orbital blood of mice was collected for blood routine examinations. Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice. Additionally, the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot. RESULTS: Administration of CTX led to significant damage to the bone marrow's structural integrity and a reduction in hematopoietic cells, establishing a model of AA. Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice. In comparison to the AA group, ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX. Furthermore, it helped alleviate the blockade in the cell cycle. Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway. CONCLUSION: This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression, primarily through modulating the MAPK signaling pathway, which paves the way for a novel therapeutic strategy in treating AA, highlighting the potential of ginsenoside Rg1 as a beneficial intervention.

10.
Pharmacol Res ; 204: 107203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719196

ABSTRACT

Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.


Subject(s)
Panax notoginseng , Panax notoginseng/chemistry , Humans , Animals , Immune System/drug effects , Leukocytes/drug effects , Leukocytes/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology
11.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2745-2753, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812175

ABSTRACT

This study investigated the protective effect of ginsenoside Rg_1(GRg_1) on oxygen and glucose deprivation/reoxygenation(OGD/R)-injured rat adrenal pheochromocytoma(PC12) cells and whether the underlying mechanism was related to the regulation of inositol-requiring enzyme 1(IRE1)-c-Jun N-terminal kinase(JNK)-C/EBP homologous protein(CHOP) signaling pathway. An OGD/R model was established in PC12 cells, and PC12 cells were randomly classified into control, model, OGD/R+GRg_1(0.1, 1, 10 µmol·L~(-1)), OGD/R+GRg_1+rapamycin(autophagy agonist), OGD/R+GRg_1+3-methyladenine(3-MA,autophagy inhibitor), OGD/R+GRg_1+tunicamycin(endoplasmic reticulum stress agonist), OGD/R+GRg_1+4-phenylbutyric acid(4-PBA, endoplasmic reticulum stress inhibitor), and OGD/R+GRg_1+3,5-dibromosalicylaldehyde(DBSA, IRE1 inhibitor) groups. Except the control group, the other groups were subjected to OGD/R treatment, i.e., oxygen and glucose deprivation for 6 h followed by reoxygenation for 6 h. Cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide(MTT) assay. Apoptosis was detected by Hoechst 33342 staining, and the fluorescence intensity of autophagosomes by the monodansylcadaverine(MDC) assay. Western blot was employed to determine the expression of autophagy-related proteins(Beclin1, LC3-Ⅱ, and p62) and the pathway-related proteins [IRE1, p-IRE1, JNK, p-JNK, glucose-regulated protein 78(GRP78), and CHOP]. The results showed that GRg_1 dose-dependently increased the viability of PC12 cells and down-regulated the expression of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, compared with the model group. Furthermore, GRg_1 decreased the apoptosis rate and MDC fluorescence intensity and up-regulated the expression of p62 protein. Compared with the OGD/R+GRg_1(10 µmol·L~(-1)) group, OGD/R+GRg_1+rapamycin and OGD/R+GRg_1+tunicamycin groups showed increased apoptosis rate and MDC fluorescence intensity, up-regulated protein levels of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, decreased relative cell survival rate, and down-regulated protein level of p62. The 3-MA, 4-PBA, and DBSA groups exerted the opposite effects. Taken together, GRg_1 may ameliorate OGD/R-induced PC12 cell injury by inhibiting autophagy via the IRE1-JNK-CHOP pathway.


Subject(s)
Apoptosis , Ginsenosides , Glucose , Protein Serine-Threonine Kinases , Transcription Factor CHOP , Animals , Rats , PC12 Cells , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Glucose/metabolism , Ginsenosides/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Apoptosis/drug effects , Signal Transduction/drug effects , Autophagy/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Oxygen/metabolism , Endoplasmic Reticulum Stress/drug effects , Multienzyme Complexes
12.
Pharmacol Res ; 203: 107164, 2024 May.
Article in English | MEDLINE | ID: mdl-38569981

ABSTRACT

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Subject(s)
Cardiovascular Diseases , Mitochondrial Proteins , Muscle Proteins , Humans , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Muscle Proteins/metabolism , Muscle Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects
13.
J Microbiol Biotechnol ; 34(4): 774-782, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38668684

ABSTRACT

This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.


Subject(s)
Autophagy , Colorectal Neoplasms , Ginsenosides , Mice, Inbred BALB C , Mice, Nude , Proto-Oncogene Proteins c-akt , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , TOR Serine-Threonine Kinases , Ginsenosides/pharmacology , Autophagy/drug effects , Animals , TOR Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Mice , Signal Transduction/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/drug effects , Humans , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Beclin-1/metabolism , Antineoplastic Agents/pharmacology
14.
Food Chem ; 448: 139112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569404

ABSTRACT

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Subject(s)
Fumigation , Ginsenosides , Panax , Quality Control , Sulfur , Ginsenosides/chemistry , Ginsenosides/analysis , Panax/chemistry , Sulfur/chemistry , Sulfites/chemistry , Sulfites/analysis , Metals/chemistry , Metals/analysis , Plant Extracts/chemistry
15.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Article in English | MEDLINE | ID: mdl-38563049

ABSTRACT

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Subject(s)
Acute Kidney Injury , Ginsenosides , Sepsis , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Lipopolysaccharides/toxicity , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/chemically induced , Sepsis/complications , Sepsis/drug therapy , Apoptosis
16.
AAPS J ; 26(3): 47, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622374

ABSTRACT

BACKGROUND: Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS: Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS: Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION: Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.


Subject(s)
Acute Lung Injury , Ginsenosides , Mitochondrial Diseases , Sepsis , Rats , Animals , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/therapeutic use , Signal Transduction , Acute Lung Injury/etiology , Acute Lung Injury/complications , Inflammation , Sepsis/complications , Sepsis/drug therapy , Mitochondrial Diseases/complications
17.
J Ethnopharmacol ; 330: 118205, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641079

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng is a valuable herb in traditional Chinese medicine. Modern research has shown that it has various benefits, including tonifying vital energy, nourishing and strengthening the body, calming the mind, improving cognitive function, regulating fluids, and returning blood pressure, etc. Rg1 is a primary active component of ginseng. It protects hippocampal neurons, improves synaptic plasticity, enhances cognitive function, and boosts immunity. Furthermore, it exhibits anti-aging and anti-fatigue properties and holds great potential for preventing and managing neurodegenerative diseases (NDDs). AIM OF THE STUDY: The objective of this study was to examine the role of Rg1 in treating chronic inflammatory NDDs and its molecular mechanisms. MATERIALS AND METHODS: In vivo, we investigated the protective effects of Rg1 against chronic neuroinflammation and cognitive deficits in mice induced by 200 µg/kg lipopolysaccharide (LPS) for 21 days using behavioral tests, pathological sections, Western blot, qPCR and immunostaining. In vitro experiments involved the stimulation of HT22 cells with 10 µg/ml of LPS, verification of the therapeutic effect of Rg1, and elucidation of its potential mechanism of action using H2DCFDA staining, BODIPY™ 581/591 C11, JC-1 staining, Western blot, and immunostaining. RESULTS: Firstly, it was found that Rg1 significantly improved chronic LPS-induced behavioral and cognitive dysfunction in mice. Further studies showed that Rg1 significantly attenuated LPS-induced neuronal damage by reducing levels of IL-6, IL-1ß and ROS, and inhibiting AIM2 inflammasome. Furthermore, chronic LPS exposure induced the onset of neuronal ferroptosis by increasing the lipid peroxidation product MDA and regulating the ferroptosis-associated proteins Gpx4, xCT, FSP1, DMT1 and TfR, which were reversed by Rg1 treatment. Additionally, Rg1 was found to activate Nrf2 and its downstream antioxidant enzymes, such as HO1 and NQO1, both in vivo and in vitro. In vitro studies also showed that the Nrf2 inhibitor ML385 could inhibit the anti-inflammatory, antioxidant, and anti-ferroptosis effects of Rg1. CONCLUSIONS: This study demonstrated that Rg1 administration ameliorated chronic LPS-induced cognitive deficits and neuronal ferroptosis in mice by inhibiting neuroinflammation and oxidative stress. The underlying mechanisms may be related to the inhibition of AIM2 inflammasome and activation of Nrf2 signaling. These findings provide valuable insights into the treatment of chronic neuroinflammation and associated NDDs.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Ginsenosides , Neurons , Signal Transduction , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Cell Line , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , DNA-Binding Proteins , Ferroptosis/drug effects , Ginsenosides/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects
18.
EFSA J ; 22(4): e8730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591023

ABSTRACT

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the roots of Panax ginseng C.A.Mey. (ginseng tincture), when used as a sensory additive in feed for horses, dogs and cats. The product is a water/ethanol (40:60 v/v) solution, with a dry matter content of no more than 6% and a content of 0.01%-0.5% (w/w) for the sum of the two triterpene saponins ginsenoside Rb1 and ginsenoside Rg1. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the tincture is safe for horses, dogs and cats at the maximum proposed use level of 48.6, 228.7 and 162 mg/kg complete feed, respectively. The Panel also concluded that the additive is considered safe for consumers when used at the proposed conditions of use in feed for horses. Ginseng tincture should be considered as an irritant to skin and eyes, and as a dermal and respiratory sensitiser. The use of the ginseng tincture as a flavour in feed for horses was not expected to pose a risk for the environment. Since the roots of P. ginseng and its preparations were recognised to flavour food and their function in feed would be essentially the same, no demonstration of efficacy was considered necessary.

19.
IBRO Neurosci Rep ; 16: 485-496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634016

ABSTRACT

Ginsenoside Rg1(Rg1), a monomer of a tetracyclic triterpenoid derivative, possesses diverse medicinal properties attributed to its unique chemical structure and may have beneficial effects on fetal development. This study aimed to investigate the protective effects of prenatal exposure to Rg1 against Methimazole-induced gestational hypothyroidism on reflexive behaviors, conditioned fear, and cortical antioxidant levels in mouse offspring.40 female virgin mice and 12 male NMRI mice were assigned to four groups: group 1 served as the control, group 2 received Methimazole(MMI) at a concentration of 0.02% in their drinking water, group 3 received Rg1(150 mg/kg), and group 4 received both MMI and Rg1.Groups of 2-4 were administered the substances from days 1-9 of gestation. After delivery, pups were selected, and reflexive motor behaviors and conditioned fear were assessed. Additionally, levels of brain tissue catalase(CAT), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione peroxidase(GPx) levels were measured. Furthermore, postpartum immobility time in the forced swimming test (FST), tail suspension test (TST), and the number of squares crossed in the open field test (OFT)were determined. The results demonstrated that maternal exposure to Rg1 improved ambulation score, hind-limb suspension score, grip strength, front-limb suspension, hind-limb foot angle, negative geotaxis, surface righting, and conditioned fear in hypothyroidism-induced offspring(P<0.05). Rg1 decreased immobility time in the FST, and TST, and increased the number of squares crossed in the OFT in postpartum hypothyroidism-induced mice(P<0.05). Moreover, Rg1 reduced brain tissue MDA levels and increased brain tissue CAT, SOD, and GPx levels in mice and their offspring(P<0.05). These findings indicate that Rg1 mitigated postpartum depression in mice and improved reflexive motor behaviors in their pups.

20.
J Ginseng Res ; 48(2): 163-170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465221

ABSTRACT

Background: Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods: Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results: This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion: Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...