Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Mikrochim Acta ; 191(8): 460, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987355

ABSTRACT

The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 µM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.


Subject(s)
Benzhydryl Compounds , Carbon , Cobalt , Milk , Nanofibers , Phenols , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Cobalt/chemistry , Carbon/chemistry , Milk/chemistry , Nanofibers/chemistry , Food Contamination/analysis , Animals , Oxides/chemistry , Limit of Detection , Electrochemical Techniques/methods , Fruit and Vegetable Juices/analysis , Green Chemistry Technology/methods , Yogurt/analysis
2.
Talanta ; 277: 126391, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38861764

ABSTRACT

An edible Mushroom-Nafion modified glassy carbon electrode (M2N5-GCE) was prepared using a homogeneous mixture varying the concentrations of these, in addition to the origin of the mushroom (Shiitake, Lentinula edodes, M1 and Abrantes, Agariscus bisporus, M2) and applied to the As(III) determination by anodic stripping voltammetry. After choosing the optimal conditions in the preparation of the electrode, the second stage was to study the effects of various parameters such as supporting electrolyte, pH, accumulation potential, and time (Eacc, tacc). The optimum experimental conditions chosen were Britton Robinson buffer 0.01 mol L-1 pH:4.6; Eacc: -1.0 and tacc: 60 s obtaining a signal of oxidation of As(0) to As(III) about 0.08 V. Peak current was proportional to arsenic concentration over the 19.6-117.6 µg L-1 range, with a 3σ detection limit of 13.4 µg L-1. The method was validated using As(III) spiked tap water from the laboratory with satisfactory results (RE:3.0 %). Finally, the method was applied to the determination of As(III) in water samples from the Loa River (Northern Chile) in the presence of As(V) in a concentration >20 times higher (RE: 2.3 %).

3.
Mikrochim Acta ; 191(7): 414, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38904836

ABSTRACT

The conventional electrochemical detection strategy for alpha-fetoprotein (AFP) is limited by the antigen-antibody (Ag-Ab) reactions and suffers from low sensitivity and poor reproducibility due to the inconsistency of Ab-modified electrodes. Herein, we designed and explored a sandwich-type electrochemical sensor for highly sensitive detection of AFP based on aptamer (Apt)-AFP-Ab interaction mode with silver@gold (Ag@Au) core-shell nanoparticles (NPs) as a signal amplifier. AuNPs were electrodeposited onto MXene (Ti3C2TX)-modified glassy carbon electrode (GCE) to get AuNPs/MXene/GCE and further used as the signal amplification substrate. The tetrahedral DNA-linked AFP aptamers were immobilized onto AuNPs/MXene/GCE surface via Au-S bonds and used as the sensing and recognition platform for AFP capturing. Ag@AuNPs with core-shell structures were synthesized, characterized, and bound with Ab as detection elements by catalyzing H2O2 reduction. In the presence of AFP, a stable Apt-AFP-Ab sandwich structure was formed owing to the high affinities of aptamer and Ab toward the target AFP. The catalytic current produced by H2O2 reduction increased linearly with the logarithm of AFP concentration from 5 × 10-4 ng/mL to 1 × 105 ng/mL, accompanied by a low detection limit (1.6 × 10-4 ng/mL). Moreover, the novel sandwich-type electrochemical sensor shows high sensitivity, outstanding selectivity, and promising performance in the analysis of actual samples, displaying a broad application prospect in bioanalysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Silver , alpha-Fetoproteins , alpha-Fetoproteins/analysis , alpha-Fetoproteins/immunology , Aptamers, Nucleotide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Humans , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Electrodes , DNA/chemistry
4.
Mikrochim Acta ; 191(7): 417, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913195

ABSTRACT

A novel electrochemical sensor was developed for the detection of lead (Pb) and copper (Cu) ions using spent coffee grounds decorated with iron oxide particles (FeO/SCG). The FeO-decorated SCG was used to modify a glassy carbon electrode (GCE). FeO, SCG, and FeO/SCG were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical properties of the modified electrode were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrode modifications increased the active surface area and electron transfer and enhanced the accumulation of the target analyte. In the optimal condition, the developed sensor showed linear ranges of 1.0 µg L-1-0.05 mg L-1 and 0.05 mg L-1-0.8 mg L-1 for Pb2+ and 5.0 µg L-1-0.1 mg L-1 and 0.1 mg L-1-0.8 mg L-1 for Cu2+. The limit of detection (LOD) was 1.0 µg L-1 for Pb2+ and 2.4 µg L-1 for Cu2+. The developed sensor was successfully applied to determine Pb2+ and Cu2+ in bullet holes. The results were in good agreement with those obtained by inductively coupled plasma optical emission spectrometry (ICP/OES).

5.
Mikrochim Acta ; 191(7): 425, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38926184

ABSTRACT

A solvothermal synthesis of ultrasmall cerium oxide nanoparticles (USCeOxNPs) with an average size of 0.73 ± 0.07 nm using deep eutectic solvent (DES) as a stabilizing medium at a temperature of 90 ºC is reported. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to morphologically characterize the USCeOxNPs. These revealed approximately spherical shapes with emission lines characteristic of cerium. Selected area electron diffraction (SAED) was used to determine the crystalline structure of the cerium oxide nanoparticles (CeO2NPs), revealing the presence of crystalline cubic structures. The USCeOxNPs-DES/CB film was characterized by scanning electron microscopy (SEM), which demonstrated the spherical characteristic of CB with layers slightly covered by DES residues. DES was characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR), indicating its formation through hydrogen bonds between the precursors. An electrochemical sensor for dopamine (DA) determination in biological fluids was developed using the USCeOxNPs together with carbon black (CB). An enhanced current response was observed on DA voltammetric determination, and this can be attributed to the USCeOxNPs. This sensor displayed linear responses for DA in the range 5.0 × 10-7 mol L-1 to 3.2 × 10-4 mol L-1, with a limit of detection of 80 nmol L-1. Besides detectability, excellent performances were verified for repeatability and anti-interference. The sensor based on USCeOxNPs synthesized in DES in a simpler and environmentally friendly way was successfully applied to determine DA in biological matrix.


Subject(s)
Cerium , Dopamine , Electrochemical Techniques , Cerium/chemistry , Dopamine/analysis , Dopamine/blood , Electrochemical Techniques/methods , Humans , Deep Eutectic Solvents/chemistry , Nanoparticles/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Particle Size
6.
Mikrochim Acta ; 191(7): 426, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38935329

ABSTRACT

Proteins from different species have been docked with aflatoxin B1 (AFB1) and identified 3 proteins (prostaglandin-E(2)9-reductase from Oryctolagus uniculus, proto-oncogene serine/threonine-protein kinase Pim-1 and human immunoglobulin G (hIgG)) as potential candidates to develop an electrochemical sensor. Fluorescence spectroscopy experiments have confirmed the interaction of hIgG with AFB1 with an affinity constant of 4.6 × 105 M-1. As a proof-of-concept, hIgG was immobilized on carbon nanocomposite (carbon nanotube-nanofiber, CNT-F)-coated glassy carbon electrode (GCE). FT-IR spectra, HR-TEM and BCA assay have confirmed successful immobilization of hIgG on the electrode (hIgG@CNT-F/GCE). The preparation of this protein electrochemical sensor requires only 1 h 36 min, which is fast as compared with preparing an electro immunosensor. hIgG@CNT-F/GCE has displayed an excellent AFB1 limit of detection (0.1 ng/mL), commendable selectivity in the presence of two other mycotoxins (ochratoxin A and patulin) and the detection of  AFB1 in spiked peanuts and corn samples.


Subject(s)
Aflatoxin B1 , Electrochemical Techniques , Immunoglobulin G , Nanotubes, Carbon , Aflatoxin B1/analysis , Aflatoxin B1/immunology , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Proto-Oncogene Mas , Electrodes , Biosensing Techniques/methods , Molecular Docking Simulation , Arachis/chemistry
7.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38832980

ABSTRACT

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Subject(s)
Electrochemical Techniques , Food Analysis , Hazard Analysis and Critical Control Points , Nanocomposites , Zearalenone , Zearalenone/analysis , Hazard Analysis and Critical Control Points/methods , Food Analysis/instrumentation , Food Analysis/methods , Nanocomposites/chemistry , Nanocomposites/standards , Electrodes , Gold/chemistry , Sensitivity and Specificity , Reproducibility of Results
8.
Mikrochim Acta ; 191(7): 418, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914884

ABSTRACT

An electrochemical immunoassay system was developed to detect CA-125 using a glassy carbon electrode (GCE) modified with MXene, graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The combined MXene-GQD/AuNPs modification displayed advantageous electrochemical properties due to the synergistic effects of MXene, GQDs, and AuNPs. The MXene-GQD composite in the modified layer provided strong mechanical properties and a large specific surface area. Furthermore, the presence of AuNPs significantly improved conductivity and facilitated the binding of anti-CA-125 on the modified GCE, thereby enhancing sensitivity. Various analytical techniques such as FE-SEM and EDS were utilized to investigate the structural and morphological characteristics as well as the elemental composition. The performance of the developed immunosensor was assessed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). Under optimized conditions in a working potential range of -0.2 to 0.6 V (vs. Ag/AgCl), the sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were determined to be 315.250 µA pU.mL-1/cm2, 0.1 to 1 nU/mL, 0.075 nU/mL, and 0.9855, respectively. The detection of CA-125 in real samples was investigated using the developed immunoassay platform, demonstrating satisfactory results including excellent selectivity and reproducibility.


Subject(s)
CA-125 Antigen , Electrochemical Techniques , Gold , Graphite , Limit of Detection , Metal Nanoparticles , Ovarian Neoplasms , Quantum Dots , CA-125 Antigen/blood , CA-125 Antigen/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Ovarian Neoplasms/blood , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Immunoassay/methods , Female , Quantum Dots/chemistry , Graphite/chemistry , Antibodies, Immobilized/immunology , Biosensing Techniques/methods , Electrodes , Membrane Proteins
9.
Gels ; 10(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38920929

ABSTRACT

This study centers on the development and characterization of an innovative electrochemical sensing probe composed of a sensing mesoporous functional sol-gel coating integrated onto a glassy carbon electrode (sol-gel/GCE) for the detection of NH3 and/or NH4+ in water. The main interest for integrating a functional sol-gel coating onto a GCE is to increase the selective and sensing properties of the GCE probe towards NH3 and/or NH4+ ions. The structure and surface morphology of the newly developed sol-gel/GCE probe were characterized employing scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared (FTIR), while the electrochemical sensing properties were evaluated by Berthelot's reaction, cyclic voltammetry (CV), and adsorptive square wave-anodic striping voltammetry (Ads SW-ASV). It is shown that the newly developed sol-gel coating is homogeneously deposited on the GCE with a sub-micron and uniform thickness close to 630 nm and a surface roughness of 25 nm. The sensing testing of the sol-gel/GCE probe showed limits of detection and limits of quantitation of 1.7 and 5.56 nM of NH4+, respectively, as well as a probe sensitivity of 5.74 × 10-1 µA/µM cm-2. The developed probe was fruitfully validated for the selective detection of NH3/NH4+ in fresh and sea water samples. Computed Student texp (0.45-1.25) and Fexp (1.69-1.78) (n = 5) tests were less than the theoretical ttab (2.78) and Ftab (6.39) at 95% probability.

10.
Int J Biol Macromol ; 273(Pt 2): 133083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866289

ABSTRACT

In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection. The electrochemical platform was made up of a glassy carbon electrode (GCE) functionalized with gold nanoparticles (AuNPs), on which anti-TfR was immobilized. The surface characteristics and electrochemical behaviors of the modified electrodes were comprehensively investigated through scanning electron microscopy, XPS, Raman spectroscopy FT-IR, electrochemical cyclic voltammetry and impedance spectroscopy. The developed immunosensor exhibited robust analytical performance with TfR fortified buffer solution, showing a linear range (LR) response from 0.01 to 3000 µg/mL, with a limit of detection (LOD) of 0.01 µg/mL and reproducibility (RSD <4 %). The fabricated sensor demonstrated high reproducibility and selectivity when subjected to testing with various types of interfering proteins. The immunosensor designed for TfR detection demonstrated several advantageous features, such as being cost-effective and requiring a small volume of test sample making it highly suitable for point-of-care applications.


Subject(s)
Biosensing Techniques , Carbon , Electrodes , Gold , Metal Nanoparticles , Receptors, Transferrin , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Carbon/chemistry , Humans , Immunoassay/methods , Limit of Detection , Electrochemical Techniques/methods , Reproducibility of Results
11.
Sci Rep ; 14(1): 14489, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914687

ABSTRACT

This work compares the electroanalytical performance of two electroanalytical systems based on (1) the glassy carbon electrode (GCE), and (2) the electrified liquid-liquid interface (eLLI), for the detection of fluoroquinolone antibiotic-danofloxacin (DANO). Our aim was to define the optimal conditions to detect the chosen analyte with two employed systems, extract a number of electroanalytical parameters, study the mechanism of the charge transfer reactions (oxidation at GCE and ion transfer across the eLLI), and to provide physicochemical constants for DANO. Detection of the chosen analyte was also performed in the spiked milk samples. To the best of our knowledge, this is the first work that directly compares the electroanalytical parameters obtained with solid electrode (in this case GCE) and eLLI. We have found that for DANO the latter provides better electroanalytical parameters (lower LOD and LOQ) as well as good selectivity when the milk was analyzed.


Subject(s)
Carbon , Electrochemical Techniques , Electrodes , Fluoroquinolones , Milk , Veterinary Drugs , Fluoroquinolones/analysis , Fluoroquinolones/chemistry , Carbon/chemistry , Carbon/analysis , Milk/chemistry , Electrochemical Techniques/methods , Animals , Veterinary Drugs/analysis , Veterinary Drugs/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry
12.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730044

ABSTRACT

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Subject(s)
Electrochemical Techniques , Limit of Detection , Molecularly Imprinted Polymers , Zinc , Molecularly Imprinted Polymers/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Zinc/chemistry , Graphite/chemistry , Humans , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/analysis , Aminoimidazole Carboxamide/blood , Aminoimidazole Carboxamide/chemistry , Nanostructures/chemistry , Electrodes
13.
Mikrochim Acta ; 191(6): 348, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38805077

ABSTRACT

A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.


Subject(s)
Aptamers, Nucleotide , Benzimidazoles , Biosensing Techniques , Carbamates , Electrochemical Techniques , Graphite , Limit of Detection , Polyethyleneimine , Polymerization , Graphite/chemistry , Carbamates/chemistry , Carbamates/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Polyethyleneimine/chemistry , Biosensing Techniques/methods , Benzimidazoles/chemistry , Aptamers, Nucleotide/chemistry , Electrodes , Reproducibility of Results
14.
Mikrochim Acta ; 191(6): 338, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780645

ABSTRACT

A novel electrochemical sensor, MIP/Cu-MOF/rGO/AuNPs/GCE, was developed by depositing gold nanoparticles, coating Cu-MOF/GO on the surface of glassy carbon electrode (GCE) before electroreducing graphene oxide (GO) to rGO and covering molecularly imprinted membrane by electropolymerization for highly sensitive detection of electroneutral organophosphorus pesticide residues in agricultural product. Cyclic voltammetry, differential pulse voltametry, scanning electron microscopy, energy-dispersive spectroscopy, and atomic force microscopy were used to characterize the imprinted sensor. Several key factors such as chitosan concentration, suspension volume, pH of polymerization solution, and polymerization scanning rate during preparation of the imprinted sensor were optimized in detail. When electroneutral phosmet was used as a template, the linear range of MIP/Cu-MOF/rGO/AuNPs/GCE for detecting phosmet was 1.00 × 10-14-5.00 × 10-7 mol/L with the limit of detection of 7.20 × 10-15 mol/L at working potentials of - 0.2 to 0.6 V. The selectivity, reproducibility, and repeatability of MIP/Cu-MOF/rGO/AuNPs/GCE were all acceptable. The recoveries of this method for determining phosmet in real samples ranged from 94.2 to 106.5%. The MIP/Cu-MOF/rGO/AuNPs/GCE sensor could be applied to detect electroneutral pesticide residues in organisms and agricultural products.

15.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709403

ABSTRACT

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Neoplastic Cells, Circulating , Palladium , Neoplastic Cells, Circulating/pathology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA/chemistry , Biosensing Techniques/methods , Palladium/chemistry
16.
Mikrochim Acta ; 191(5): 245, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578313

ABSTRACT

An electrochemical sensor is established using an iron titanate (FeTiO3) modified glassy carbon electrode (GCE) to detect nitrofurazone. Various microscopic and spectroscopic analysis was performed to reveal the properties of the prepared FeTiO3 hexagonal nanoplates. The FeTiO3/GCE presents enhanced electrochemical response to nitrofurazone at the peak reduction potential of - 0.471 V with a larger peak current than the bare GCE due to high electrical conductivity, enhanced specific surface area, and abundant active sites. The superior nitrofurazone detection performance includes the low limit of detection of 0.002 µM and the sensitivity of 0.551 µA µM-1 cm-2 in the linear concentration range of 0.01-162.2 µM. The reproducibility and selectivity studies of the FeTiO3/GCE show excellent results with a relative standard deviation of < 5%. The practicability of FeTiO3/GCE is confirmed by monitoring nitrofurazone in actual samples. This work demonstrates that perovskite-type FeTiO3 has great potential in real-world sample analysis, and provides a new way to develop high-performance electrochemical sensors.

17.
Mikrochim Acta ; 191(5): 266, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625578

ABSTRACT

A photoelectrochemical sensor for target detection of hydrogen peroxide was designed based on a new heterojunction nanocomposite which was sulfhydryl-borate ester-modified A1/B1-type pillar[5]arene (BP5)-functionalized Au NPs and multi-walled carbon nanotubes hybridized with bismuth bromide oxide (Au@BP5/MWNTs-BiOBr). The specific sensor was based on the direct induction of oxidation by hydrogen peroxide of the borate ester group of pillar[5]arene. Additionally, the local surface plasmon resonance (LSPR) of Au NPs enhanced visible light capture, the host-guest complexation of BP5 with H2O2 enhanced photocurrent response, the layer-by-layer stacked nanoflower structure of BiOBr provided large specific surface area with more active sites, and the conductivity of MWNTs enhanced the charge separation efficiency and significantly improves the stability of PEC. Their synthesis effect significantly increased the photocurrent signal and further enhanced the detection result. Under the optimal conditions, the linear concentration range of H2O2 detected by the Au@BP5/MWNTs-BiOBr sensor was from 1 to 60 pmol/L. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 0.333 pmol/L and 1 pmol/L, respectively, and the sensitivity was 6.471 pmol/L. Importantly, the PEC sensor has good stability, reproducibility, and interference resistance and can be used for the detection of hydrogen peroxide in real cells.

18.
Mikrochim Acta ; 191(5): 291, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687386

ABSTRACT

Nanorods assembled 3D microspheres of TiO2/MnO2 were prepared via a simple one-pot hydrothermal approach. The resultant composite material exhibited remarkable electrocatalytic activity for hydrogen peroxide (H2O2) in comparison to each single component. The electrochemical sensor constructed with TiO2/MnO2 exhibited a linear relationship within the range 0.0001-5.6 mmol·L-1 for H2O2. The limit of detection (LOD) and sensitivity for H2O2 were 0.03 µmol·L-1 (S/N = 3) and 316.6 µA (mmol·L-1)-1 cm-2. Moreover, this sensor can be employed to detect trace amount of H2O2 in serum and urine samples successfully, supporting an insight and strategy for a more sensitive electrochemical sensor.

19.
Mikrochim Acta ; 191(5): 247, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38587580

ABSTRACT

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 µM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.


Subject(s)
Nanotubes, Carbon , Phosphates , Sweat , Humans , Molecularly Imprinted Polymers , Uric Acid , Aluminum Oxide
20.
Environ Res ; 251(Pt 1): 118648, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462090

ABSTRACT

The existence of multiple pesticide residues in fruits and vegetables constitutes a direct peril to living organisms. Therefore, it is crucial to develop a low-cost screening method for determining organophosphate pesticides (OPPs) in food samples. This study describes the solvothermal synthesis of a ternary composite comprising multi-walled carbon nanotubes (MWCNT), zirconium oxide, and a zirconium-metal-organic framework (Zr-MOF). The ternary composite was characterised using XRD, FESEM, FTIR, and BET. The ternary composite provides a large surface area (1158 m2/g) compared with the pristine Zr-MOF (868 m2/g). The composite-modified glassy carbon electrode was used to determine nine pesticides, including organophosphate (malathion, dimethoate, chlorpyrifos, monocrotophos, and glyphosate) and non-organophosphate (thiophanate methyl, carbendazim, atrazine, and 2,4, D). In particular, various chemical combinations of OPPs were selected, such as S-P=S, P=S, P=O, and non-OPPs such as C=S (with sulphur), and without sulphur. The sensor results show that the sensor selectivity is high for OPPs containing both phosphorus and sulphur molecules. The low detection limit of the sensor was 2.02, 2.8, 2.5, 1.11, and 2.01 nM for malathion, chlorpyrifos, dimethoate, monocrotophos, and glyphosate, respectively. The electrode exhibited significant chemical stability (93%) after 100 cycles, good repeatability, and a long shelf life. The sensor is reliable for qualitative real-time applications.


Subject(s)
Nanotubes, Carbon , Pesticides , Zirconium , Zirconium/chemistry , Pesticides/analysis , Nanotubes, Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...