Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.045
Filter
1.
Int J Nanomedicine ; 19: 6999-7014, 2024.
Article in English | MEDLINE | ID: mdl-39011386

ABSTRACT

Introduction: Glioblastoma multiforme (GBM), a highly invasive and prognostically challenging brain cancer, poses a significant hurdle for current treatments due to the existence of the blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Methods: We present a biomimetic nanoplatform with angiopep-2-modified macrophage membrane, loaded with indocyanine green (ICG) templated self-assembly of SN38 (AM-NP), facilitating active tumor targeting and effective blood-brain barrier penetration through specific ligand-receptor interaction. Results: Upon accumulation at tumor sites, these nanoparticles achieved high drug concentrations. Subsequent combination of laser irradiation and release of chemotherapy agent SN38 induced a synergistic chemo-photothermal therapy. Compared to bare nanoparticles (NPs) lacking cell membrane encapsulation, AM-NPs significantly suppressed tumor growth, markedly enhanced survival rates, and exhibited excellent biocompatibility with minimal side effects. Conclusion: This NIR-activatable biomimetic camouflaging macrophage membrane-based nanoparticles enhanced drug delivery targeting ability through modifications of macrophage membranes and specific ligands. It simultaneously achieved synergistic chemo-photothermal therapy, enhancing treatment effectiveness. Compared to traditional treatment modalities, it provided a precise, efficient, and synergistic method that might have contributed to advancements in glioblastoma therapy.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Drug Liberation , Glioblastoma , Indocyanine Green , Nanoparticles , Photothermal Therapy , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/metabolism , Animals , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Indocyanine Green/pharmacology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Humans , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Photothermal Therapy/methods , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Irinotecan/pharmacokinetics , Irinotecan/chemistry , Irinotecan/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/pharmacokinetics , Infrared Rays , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Drug Delivery Systems/methods , Macrophages/drug effects , Macrophages/metabolism , Mice, Nude , Combined Modality Therapy/methods
2.
Clin Case Rep ; 12(7): e9179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011519

ABSTRACT

Tuberculous brain abscess (TBA) in a child was initially misdiagnosed as glioma. Two craniotomies, abscess drainage, and anti-tubercular therapy led to recovery. Pontine TBA, though rare and atypical, can have better outcome with timely intervention.

3.
Radiother Oncol ; : 110437, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013502

ABSTRACT

PURPOSE: Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS: Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS: Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION: In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.

5.
Article in English | MEDLINE | ID: mdl-39017829

ABSTRACT

PURPOSE OF REVIEW: Brain tumor-related epilepsy is a heterogenous syndrome involving variability in incidence, timing, pathophysiology, and clinical risk factors for seizures across different brain tumor pathologies. Seizure risk and disability are dynamic over the course of disease and influenced by tumor-directed treatments, necessitating individualized patient-centered management strategies to optimize quality of life. RECENT FINDINGS: Recent translational findings in diffuse gliomas indicate a dynamic bidirectional relationship between glioma growth and hyperexcitability. Certain non-invasive measures of hyperexcitability are correlated with survival outcomes, however it remains uncertain how to define and measure clinically relevant hyperexcitability serially over time. The extent of resection, timing of pre-operative and/or post-operative seizures, and the likelihood of tumor progression are critical factors impacting the risk of seizure recurrence. Newer anti-seizure medications are generally well-tolerated with similar efficacy in this population, and several rapid-onset seizure rescue agents are in development and available. Seizures in patients with brain tumors are strongly influenced by the underlying tumor biology and treatment. An improved understanding of the interactions between tumor cells and the spectrum of hyperexcitability will facilitate targeted therapies. Multidisciplinary management of seizures should occur with consideration of tumor-directed therapy and prognosis, and anti-seizure medication decision-making tailored to the individual priorities and quality of life of the patient.

6.
Trends Mol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013724

ABSTRACT

Glioma, the most common primary malignant tumor in the central nervous system (CNS), lacks effective treatments, and >60% of cases are glioblastoma (GBM), the most aggressive form. Despite advances in immunotherapy, GBM remains highly resistant. Approaches that target tumor antigens expedite the development of immunotherapies, including personalized tumor-specific vaccines, patient-specific target selection, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. Recent studies show promising results in treating GBM and lower-grade glioma (LGG), fostering hope for future immunotherapy. This review discusses tumor vaccines against glioma, preclinical models in immunological research, and the role of CD4+ T cells in vaccine-induced antitumor immunity. We also summarize clinical approaches, challenges, and future research for creating more effective vaccines.

7.
Front Neurol ; 15: 1413015, 2024.
Article in English | MEDLINE | ID: mdl-39015316

ABSTRACT

Background: Earlier observational studies have demonstrated a correlation between glioma and the risk of neurodegenerative diseases (NDs), but the causality and direction of their associations remain unclear. The objective of this study was to ascertain the causal link between glioma and NDs using Mendelian randomization (MR) methodology. Methods: Genome-wide association study (GWAS) data were used in a two-sample bi-directional MR analysis. From the largest meta-analysis GWAS, encompassing 18,169 controls and 12,488 cases, summary statistics data on gliomas was extracted. Summarized statistics for NDs, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) were obtained from the GWAS of European ancestry. Inverse variance weighted (IVW) method was elected as the core MR approach with weighted median (WM) method and MR-Egger method as complementary methods. In addition, sensitivity analyses were performed. A Bonferroni correction was used to correct the results. Results: Genetically predicted glioma had been related to decreased risk of AD. Specifically, for all glioma (IVW: OR = 0.93, 95% CI = 0.90-0.96, p = 4.88 × 10-6) and glioblastoma (GBM) (IVW: OR = 0.93, 95% CI = 0.91-0.95, p = 5.11 × 10-9). We also found that genetically predicted all glioma has a suggestive causative association with MS (IVW: OR = 0.90, 95% CI = 0.81-1.00, p = 0.045). There was no evidence of causal association between glioma and ALS or PD. According to the results of reverse MR analysis, no discernible causal connection of NDs was found on glioma. Sensitivity analyses validated the robustness of the above associations. Conclusion: We report evidence in support of potential causal associations of different glioma subtypes with AD and MS. More studies are required to uncover the underlying mechanisms of these findings.

8.
Front Med (Lausanne) ; 11: 1419038, 2024.
Article in English | MEDLINE | ID: mdl-39015784

ABSTRACT

Objectives: To assess the efficacy and adverse events of bevacizumab (BEV) combined with temozolomide (TMZ) in the treatment of glioma. Materials and methods: Randomized controlled trials (RCT) involving BEV combined with TMZ in the treatment of glioma were searched using PubMed, Embase and Cochrane library, and a comprehensive meta-analysis was conducted. The primary outcomes were overall survival time (OS) and progression-free survival time (PFS), and the secondary outcome was adverse events. Researchers conducted literature screening, data extraction and quality assessment according to inclusion and exclusion criteria. RevMan 5.3 software was used for meta-analysis. Results: A total of 8 prospective RCTs of 3,039 cases were included in the meta-analysis. Meta-analysis showed that compared with TMZ alone, BEV combined with TMZ could significantly improve PFS, OS and complete remission rate (CR). A total of 6 studies reported related adverse events, mainly including thrombocytopenia, neutropenia, leukopenia, anemia and fatigue. Combination therapy may have more adverse events but no serious consequences. Conclusion: The combination of BEV and TMZ had a better therapeutic effect on glioblastoma, significantly prolonged the survival time of patients and improved the quality of life. However, some patients are afflicted with the adverse events of combination therapy, and subsequent studies should continue to conduct larger, multi-center RCTs to confirm the findings and explore in depth how to minimize and manage adverse events effectively.

9.
Childs Nerv Syst ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970692

ABSTRACT

OBJECTIVE: To review the literature on second-look surgery in pediatric low-grade gliomas (LGG) with a view to presenting both sides of the picture of re-exploration. METHODS: Collection of material from recent literature on pediatric LGG. This was a retrospective review of these publications. RESULTS: There are a number of publications recommending second-look surgery in selected cases, provided morbidity of the second surgery is minimum, and indeed some in which there is improvement in the neurodeficit after the second resection. CONCLUSION: There seems a fair balance of articles recommending and dissuading the practice of second-look surgery, but in our limited experience we have found it useful in selected patients.

10.
Aging (Albany NY) ; 162024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970773

ABSTRACT

AIM: The objective is to investigate the prognostic factors associated with gliomas and to develop and assess a predictive nomogram model connected to survival that may serve as an additional resource for the clinical management of glioma patients. METHOD: From 2010 to 2015, participants included in the study were chosen from the Surveillance Epidemiology and End Results (SEER) database. Gliomas were definitively diagnosed in each of them. They were divided into the training group and the validation cohort at random (7/3 ratio) using a random number table. To identify the independent predictive markers for overall survival (OS), Cox regression analysis was utilized. Subsequently, the training cohort's survival-related nomogram predictive model for OS was created by incorporating the fundamental patient attributes. Following that, the training cohort's model underwent internal validation. The nomogram model's authenticity and reliability were assessed through the computation of receiver operating characteristic (ROC) curves and concordance index (C-index). To evaluate the degree of agreement between the observed and predicted values in the training and validation cohorts, calibration plots were created. RESULT: Age, primary site, histological type, surgery, chemotherapy, marital status, and grade were the independent predictive factors for OS in the training cohort, according to Cox regression analysis. Moreover, the nomogram model for predicting 1-year, 3-year, and 5-year OS was built using these variables. The C-indexes of OS for glioma patients in the training cohort and internal validation cohort were found to be 0.779 (95% CI=0.769-0.789) and 0.776 (95% CI=0.760-0.792), respectively, according to the results. The ROC curves also demonstrated good discrimination. Additionally, calibration plots demonstrated a fair amount of agreement. CONCLUSIONS: In summary, the nomogram prediction model of OS demonstrated a moderate level of reliability in its predictive performance, offering valuable reference data to enable doctors to quickly and easily determine the survival likelihood of patients with gliomas.

11.
Curr Med Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990448

ABSTRACT

OBJECTIVE: To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS: Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS: A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION: Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.

12.
Acta Neurochir (Wien) ; 166(1): 292, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985352

ABSTRACT

BACKGROUND: Intraoperative MRI (iMRI) has emerged as a useful tool in glioma surgery to safely improve the extent of resection. However, iMRI requires a dedicated operating room (OR) with an integrated MRI scanner solely for this purpose. Due to physical or economical restraints, this may not be feasible in all centers. The aim of this study was to investigate the feasibility of using a non-dedicated MRI scanner at the radiology department for iMRI and to describe the workflow with special focus on time expenditure and surgical implications. METHODS: In total, 24 patients undergoing glioma surgery were included. When the resection was deemed completed, the wound was temporarily closed, and the patient, under general anesthesia, was transferred to the radiology department for iMRI, which was performed using a dedicated protocol on 1.5 or 3 T scanners. After performing iMRI the patient was returned to the OR for additional tumor resection or final wound closure. All procedural times, timestamps, and adverse events were recorded. RESULT: The median time from the decision to initiate iMRI until reopening of the wound after scanning was 68 (52-104) minutes. Residual tumors were found on iMRI in 13 patients (54%). There were no adverse events during the surgeries, transfers, transportations, or iMRI-examinations. There were no wound-related complications or infections in the postoperative period or at follow-up. There were no readmissions within 30 or 90 days due to any complication. CONCLUSION: Performing intraoperative MRI using an MRI located outside the OR department was feasible and safe with no adverse events. It did not require more time than previously reported data for dedicated iMRI scanners. This could be a viable alternative in centers without access to a dedicated iMRI suite.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Workflow , Humans , Glioma/surgery , Glioma/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Middle Aged , Female , Male , Magnetic Resonance Imaging/methods , Adult , Aged , Neurosurgical Procedures/methods , Monitoring, Intraoperative/methods , Feasibility Studies , Operating Rooms
13.
Pathol Res Pract ; 260: 155442, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38991456

ABSTRACT

Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.

14.
Acta Med Litu ; 31(1): 61-67, 2024.
Article in English | MEDLINE | ID: mdl-38978869

ABSTRACT

22-year-old male diagnosed with Tuberous Sclerosis Complex (TSC), a genetic disorder characterized by benign tumors in various organs, with a focus on neurological implications. Central to the study is the development of Subependymal Giant Cell Astrocytomas (SEGAs), leading to hydrocephalus in the patient. The diagnosis of TSC was made in the patient's childhood, and he was monitored regularly. The study highlights a significant growth in a subependymal nodule, leading to monoventricular hydrocephalus. MRI scans played a crucial role in identifying the progression of SEGAs and the subsequent hydrocephalus. The treatment approach involved endoscopic surgical removal of the SEGA, with histopathology confirming the diagnosis. Post-surgical outcomes over an eight-year follow-up period showed a normalization in ventricular size and the stability of other subependymal nodules, without any complications. This case underscores the importance of regular monitoring for TSC patients, early intervention for complications like hydrocephalus, and the need for a multidisciplinary treatment approach. The case study provides valuable insights into the management of neurodevelopmental disorders and the complexities surrounding TSC and SEGAs.

15.
J Clin Neurosci ; 126: 247-255, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981364

ABSTRACT

BACKGROUND AND PURPOSE: Evidence and clinical guidelines support the use of adjuvant RT in high-risk low-grade gliomas. However, patients with oligodendroglioma have a more indolent disease course and delaying or avoiding RT is often considered to reduce treatment-related toxicities. As the optimal adjuvant management for oligodendroglioma is unclear, we aimed to assess the effect of adjuvant RT on overall survival (OS) and progression-free survival (PFS). METHODS: MEDLINE, EMBASE, CENTRAL and CINAHL were searched from January 1990 to February 2023 for studies comparing adjuvant RT versus no adjuvant RT for patients with oligodendroglioma. RESULTS: This review found 17 eligible studies including 14 comparative retrospective studies and 3 randomized controlled trials. Using random-effects model, the results suggested that adjuvant RT improved OS by 28 % (HR 0.72, 95 % CI (0.56-0.93), I2 = 86 %), and PFS by 48 % (HR 0.52, (95 % CI 0.40-0.66), I2 = 48 %) compared to patients without adjuvant RT. Subgroup analysis showed that upfront adjuvant RT improved OS and PFS compared to salvage RT. There were no significant differences in OS and PFS between adjuvant RT versus adjuvant chemotherapy. There was improvement in PFS but not OS for adjuvant chemoradiotherapy versus adjuvant chemotherapy alone. Adjuvant RT improved OS in WHO Grade 3 but not WHO Grade 2 oligodendroglioma. CONCLUSION: Overall, adjuvant RT improved OS and PFS in patients with oligodendroglioma. In patients with low-risk features (e.g. Grade 2, gross total resection), alternative approaches and individualization of management such as adjuvant chemotherapy alone may be reasonable considering the lack of survival benefit. Future efforts should prospectively investigate these treatment regimens on molecularly-classified oligodendroglioma patients (defined by presence of IDH mutation and 1p/19q co-deletion), balancing between maximizing survival outcomes and reducing RT-related toxicities.

16.
Eur Radiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981890

ABSTRACT

BACKGROUND: Children with constitutional mismatch repair deficiency (CMMRD) syndrome have an increased risk of high-grade gliomas (HGG), and brain imaging abnormalities. This study analyzes brain imaging features in CMMRD syndrome children versus those with HGG without CMMRD. METHODS: Retrospective comparative analysis of brain imaging in 30 CMMRD children (20 boys, median age eight years, 22 with HGG), seven with Lynch syndrome (7 HGG), 39 with type 1 neurofibromatosis (NF1) (four with HGG) and 50 with HGG without MMR or NF1 pathogenic variant ("no-predisposition" patients). RESULTS: HGG in CMMRD and Lynch patients were predominantly hemispheric (versus midline) compared to NF1 and no-predisposition patients (91% and 86%, vs 25% and 54%, p = 0.004). CMMRD-associated tumors often had ill-defined boundaries (p = 0.008). All CMMRD patients exhibited at least one developmental venous anomaly (DVA), versus 14%, 10%, and 6% of Lynch, NF1, and no-predisposition patients (p < 0.0001). Multiple DVAs were observed in 83% of CMMRD patients, one NF1 patient (3%), and never in other groups (p < 0.0001). Cavernomas were discovered in 21% of CMMRD patients, never in other groups (p = 0.01). NF1-like focal areas of high T2-FLAIR signal intensity (FASI) were more prevalent in CMMRD patients than in Lynch or no-predisposition patients (50%, vs 20% and 0%, respectively, p < 0.0001). Subcortical and ill-limited FASI, possibly involving the cortex, were specific to CMMRD (p < 0.0001) and did not evolve in 93% of patients (13/14). CONCLUSION: Diffuse hemispherically located HGG associated with multiple DVAs, cavernomas, and NF1-like or subcortical FASI strongly suggests CMMRD syndrome compared to children with HGG in other contexts. CLINICAL RELEVANCE STATEMENT: The radiologic suggestion of CMMRD syndrome when confronted with HGGs in children may prompt genetic testing. This can influence therapeutic plans. Therefore, imaging features could potentially be incorporated into CMMRD testing recommendations. KEY POINTS: Using imaging to detect CMMRD syndrome early may improve patient care. CMMRD features include: hemispheric HGG with multiple developmental venous anomalies and NF1-like or subcortical areas with high T2-FLAIR intensity. We propose novel imaging features to improve the identification of potential CMMRD patients.

17.
J Med Signals Sens ; 14: 7, 2024.
Article in English | MEDLINE | ID: mdl-38993200

ABSTRACT

Background: Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods: The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results: Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion: Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.

18.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994974

ABSTRACT

Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.


Subject(s)
Brain Stem Neoplasms , Glioma , Histones , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Histones/metabolism , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/metabolism , Brain Stem Neoplasms/therapy , Epigenesis, Genetic , Molecular Targeted Therapy , Mutation/genetics , Animals
19.
Int Immunopharmacol ; 139: 112665, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002523

ABSTRACT

BACKGROUND: Immunotherapy has revolutionized the treatment of various types of tumors, but there has been no breakthrough in the treatment of gliomas. The aim of this study is to discover valuable immunotherapy target in glioma, analyze its expression in glioma and the related microenvironment, explore potential immunotherapy strategies, and propose new possibilities for the treatment of gliomas. METHODS: Immunohistochemistry (IHC) and multiplex fluorescence immunohistochemistry (mIHC) were used to analyze the expression of common immune markers and checkpoints in 187 glioma patients from Sun Yat-sen University Caner Center (SYSUCC). Bioinformatics analysis was used to examine the expression of TIM-3 in different macrophages using the Chinese Glioma Genome Atlas (CGGA) single-cell sequencing database. The Kaplan-Meier curve was used to predict the prognostic value of samples with high TIM-3 and CD68 expression. The R package was used to analyze the somatic mutation status and the sensitivity of small molecule inhibitors in TIM-3/CD68 double-high expression samples. RESULTS: TIM-3 is a relatively highly expressed immune checkpoint in glioma. Unlike other tumors, TIM-3 is mainly expressed on macrophages in the glioma microenvironment. TIM-3/CD68 double-high expression suggests poor survival in glioma and may be a new upgrade marker in both IDH-mutant glioma and IDH-wildtype low-grade glioma (LGG) glioma (P < 0.01). Exploring the combination of TIM-3 inhibitors and p38 MAPK inhibitor may be a potential treatment direction for TIM-3/CD68 double high expression gliomas in the future. CONCLUSIONS: The combination of TIM-3 and CD68 holds significant importance as a potential target for both prognosis and therapeutic intervention in glioma.

20.
EBioMedicine ; 106: 105243, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004066

ABSTRACT

BACKGROUND: Surgery is crucial for glioma treatment, but achieving complete tumour removal remains challenging. We evaluated the effectiveness of a probe targeting monocarboxylate transporter 4 (MCT4) in recognising gliomas, and of near-infrared window II (NIR-II) fluorescent molecular imaging and photothermal therapy as treatment strategies. METHODS: We combined an MCT4-specific monoclonal antibody with indocyanine green to create the probe. An orthotopic mouse model and a transwell model were used to evaluate its ability to guide tumour resection using NIR-II fluorescence and to penetrate the blood-brain barrier (BBB), respectively. A subcutaneous tumour model was established to confirm photothermal therapy efficacy. Probe specificity was assessed in brain tissue from mice and humans. Finally, probe effectiveness in photothermal therapy was investigated. FINDINGS: MCT4 was differentially expressed in tumour and normal brain tissue. The designed probe exhibited precise tumour targeting. Tumour imaging was precise, with a signal-to-background (SBR) ratio of 2.8. Residual tumour cells were absent from brain tissue postoperatively (SBR: 6.3). The probe exhibited robust penetration of the BBB. Moreover, the probe increased the tumour temperature to 50 °C within 5 min of laser excitation. Photothermal therapy significantly reduced tumour volume and extended survival time in mice without damage to vital organs. INTERPRETATION: These findings highlight the potential efficacy of our probe for fluorescence-guided surgery and therapeutic interventions. FUNDING: Jilin Province Department of Science and Technology (20200403079SF), Department of Finance (2021SCZ06) and Development and Reform Commission (20200601002JC); National Natural Science Foundation of China (92059207, 92359301, 62027901, 81930053, 81227901, U21A20386); and CAS Youth Interdisciplinary Team (JCTD-2021-08).

SELECTION OF CITATIONS
SEARCH DETAIL
...