Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Inorg Biochem ; 262: 112743, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39357192

ABSTRACT

Human serum albumin (HSA) has a strong binding affinity for heme b, forming a complex in a 1:1 ratio with the co-factor ([HSA-FeIIIheme]). This system displays spectroscopic and functional properties comparable to globins when chemical derivatives mimicking them are incorporated into the protein matrix. The aim of this study is to generate globin-like systems using [HSA-FeIIIheme] as a protein template and binding N-donor ligands (imidazole, Im; and 1-methylimidazole, 1-MeIm) to construct artificial [HSA-Fe(heme)-(N-donor)] complexes. Their electronic structure and binding thermodynamics are investigated using UV-vis and (synchronous) fluorescence spectroscopies, while ligand-protein interactions are visualized using docking simulations. The imidazole derivatives have a strong affinity for [HSA-FeIIIheme] (K âˆ¼ 104-106), where the spontaneous binding of Im and 1-MeIm are dominated by entropic and enthalpic effects, respectively. The reduced form of the [HSA-Fe(heme)-(N-donor)] complexes demonstrate nitrite reductase (NiR) activity similar to that observed in globins, but with significant differences in their rates. [HSA-FeIIheme-(1-MeIm)] reduces nitrite ∼4× faster than the Im analogue, and âˆ¼ 30× faster than myoglobin (Mb). The enhanced NiR activity of [HSA-FeIIheme-(1-MeIm)] is a cumulative effect of several factors including a slightly expanded and more optimal heme binding pocket, nearby residues as possible proton sources, and a H-bonding interaction between 1-MeIm and residues Arg160 and Lys181 that may have a long-distance influence on the heme π electron density.

2.
Biochem Biophys Res Commun ; 734: 150613, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39222577

ABSTRACT

The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homologous and non-homologous proteins with identical topology. The analysis focuses on secondary structures with special emphasis on their fraction, distribution along the polypeptide chain, and chirality. Three different groups of proteins with identical topology were considered according to the CATH database: a homologous group of Globins, a group of Phycocyanins, which is often considered as a potential relative of globins, and a diverse assembly of other globin-like proteins. Some structural patterns in the distribution of secondary structure have been identified within Globins. A similar profile was observed in Phycocyanins, in contrast to the third group. In addition, a distinguishable structural motif, including structures such as 310-helix and irregular structure, has been found in both Globins and Phycocyanins, which can be proposed as an evolutionary imprint.

3.
J Inorg Biochem ; 257: 112595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759262

ABSTRACT

Globins, such as myoglobin (Mb) and neuroglobin (Ngb), are ideal protein scaffolds for the design of functional metalloenzymes. To date, numerous approaches have been developed for enzyme design. This review presents a summary of the progress made in the design of functional metalloenzymes based on Mb and Ngb, with a focus on the exploitation of covalent interactions, including coordination bonds and covalent modifications. These include the construction of a metal-binding site, the incorporation of a non-native metal cofactor, the formation of Cys/Tyr-heme covalent links, and the design of disulfide bonds, as well as other Cys-covalent modifications. As exemplified by recent studies from our group and others, the designed metalloenzymes have potential applications in biocatalysis and bioconversions. Furthermore, we discuss the current trends in the design of functional metalloenzymes and highlight the importance of covalent interactions in the design of functional metalloenzymes.


Subject(s)
Globins , Myoglobin , Nerve Tissue Proteins , Neuroglobin , Neuroglobin/metabolism , Neuroglobin/chemistry , Myoglobin/chemistry , Myoglobin/metabolism , Globins/chemistry , Globins/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Humans , Animals , Heme/chemistry , Heme/metabolism , Binding Sites , Metalloproteins/chemistry , Metalloproteins/metabolism , Protein Engineering/methods
4.
Biomolecules ; 13(8)2023 08 10.
Article in English | MEDLINE | ID: mdl-37627298

ABSTRACT

Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.


Subject(s)
Cytochromes c , Nerve Tissue , Neuroglobin , Cytoplasm , Mitochondria
5.
Antioxidants (Basel) ; 12(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37507861

ABSTRACT

Plants continuously interact with fungi, some of which, such as Fusarium oxysporum, are lethal, leading to reduced crop yields. Recently, nitric oxide (NO) has been found to play a regulatory role in plant responses to F. oxysporum, although the underlying mechanisms involved are poorly understood. In this study, we show that Arabidopsis mutants with altered levels of phytoglobin 1 (Glb1) have a higher survival rate than wild type (WT) after infection with F. oxysporum, although all the genotypes analyzed exhibited a similar fungal burden. None of the defense responses that were analyzed in Glb1 lines, such as phenols, iron metabolism, peroxidase activity, or reactive oxygen species (ROS) production, appear to explain their higher survival rates. However, the early induction of the PR genes may be one of the reasons for the observed survival rate of Glb1 lines infected with F. oxysporum. Furthermore, while PR1 expression was induced in Glb1 lines very early on the response to F. oxysporum, this induction was not observed in WT plants.

6.
Biomolecules ; 13(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37189430

ABSTRACT

Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.


Subject(s)
Hemeproteins , Heme/metabolism , Ligands , Hemeproteins/chemistry , Hemeproteins/metabolism
7.
J Inorg Biochem ; 238: 112063, 2023 01.
Article in English | MEDLINE | ID: mdl-36370505

ABSTRACT

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Globins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cysteine/metabolism , Hydrogen Peroxide/metabolism , Heme/chemistry , Nervous System/metabolism
8.
Biochemistry (Mosc) ; 87(9): 1035-1049, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36180994

ABSTRACT

The review is devoted to the patterns of evolution of α- and ß-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/ß-globin genes in Amniota occurred due to the performance by α-globins and ß-globins of non-canonical functions not related to oxygen transport.


Subject(s)
Evolution, Molecular , beta-Globins , Animals , Globins/genetics , Multigene Family , Oxygen , Phylogeny , Vertebrates/genetics , alpha-Globins/genetics , beta-Globins/genetics
9.
Cells ; 11(18)2022 09 12.
Article in English | MEDLINE | ID: mdl-36139413

ABSTRACT

Ever since the days of NO being proclaimed as the "molecule of the year", the molecular effects of this miracle gas on the globins have remained elusive. While its vasodilatory role in the cardiopulmonary system and the vasculature is well recognized, the molecular underpinnings of the NO-globin axis are incompletely understood. We show, by transwell co-culture of nitric oxide (NO) generating, HEK eNOS/nNOS cells, and K562 erythroid or C2C12 muscle myoblasts, that low doses of NO can effectively insert heme into hemoglobin (Hb) and myoglobin (Mb), making NO not only a vasodilator, but also a globin heme trigger. We found this process to be dependent on the NO flux, occurring at low NO doses and fading at higher doses. This NO-triggered heme insertion occurred into Hb in just 30 min in K562 cells and into muscle Mb in C2C12 myoblasts between 30 min and 1 h, suggesting that the classical effect of NO on upregulation of globin (Hb or Mb) is just not transcriptional, but may involve sufficient translational events where NO can cause heme-downloading into the apo-globins (Hb/Mb). This effect of NO is unexpected and highlights its significance in maintaining globins in its heme-containing holo-form, where such heme insertions might be required in the circulating blood or in the muscle cells to perform spontaneous functions.


Subject(s)
Heme , Myoglobin , Hemoglobins , Muscles , Nitric Oxide , Vasodilator Agents
10.
Redox Biol ; 56: 102478, 2022 10.
Article in English | MEDLINE | ID: mdl-36116161

ABSTRACT

Nitric oxide (NO) is a signal molecule and plays a critical role in the regulation of vascular tone, displays anti-platelet and anti-inflammatory properties. While our earlier and current studies found that low NO doses trigger a rapid heme insertion into immature heme-free soluble guanylyl cyclase ß subunit (apo-sGCß), resulting in a mature sGC-αß heterodimer, more recent evidence suggests that low NO doses can also trigger heme-maturation of hemoglobin and myoglobin. This low NO phenomena was not only limited to sGC and the globins, but was also found to occur in all three nitric oxide synthases (iNOS, nNOS and eNOS) and Myeloperoxidase (MPO). Interestingly high NO doses were inhibitory to heme-insertion for these hemeproteins, suggesting that NO has a dose-dependent dual effect as it can act both ways to induce or inhibit heme-maturation of key hemeproteins. While low NO stimulated heme-insertion of globins required the presence of the NO-sGC-cGMP signal pathway, iNOS heme-maturation also required the presence of an active sGC. These effects of low NO were significantly diminished in the tissues of double (n/eNOS-/-) and triple (n/i/eNOS-/-) NOS knock out mice where lung sGC was found be heme-free and the myoglobin or hemoglobin from the heart/lungs were found be low in heme, suggesting that loss of endogenous NO globally impacts the whole animal and that this impact of low NO is both essential and physiologically relevant for hemeprotein maturation. Effects of low NO were also found to be protective against ischemia reperfusion injury on an ex vivo lung perfusion (EVLP) system prior to lung transplant, which further suggests that low NO levels are also therapeutic.


Subject(s)
Heme , Nitric Oxide , Animals , Guanylate Cyclase , Heme/metabolism , Mice , Myoglobin , Nitric Oxide/metabolism , Peroxidase , Soluble Guanylyl Cyclase/genetics , Soluble Guanylyl Cyclase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL