Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Biotechnol Rep (Amst) ; 41: e00824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225961

ABSTRACT

The objective of this study was to evaluate if the inclusion of a blend composed of exogenous enzymes (amylase, protease, cellulase, xylanase and beta glucanase) in the individual and combined form in the feedlot steers diet has benefits on the physiology, rumen fermentation, digestibility and fatty acid profile in rumen and meat. The experiment used 24 animals, divided into 4 treatments, described as: T1-CON, T2-BLEND (0.5 g mixture of enzyme), T3-AMIL (0.5 g alpha-amylase), T4-BLEND+AMIL (0.5 g enzyme blend+ 0.5 g amylase). The concentration of mineral matter was higher in the meat of cattle of T4-BLEND+AMIL. A higher proportion of monounsaturated fatty acids was observed in the T3-AMIL group when compared to the others. The percentage of polyunsaturated fatty acids was higher in the T2-BLEND and T4-BLEND+AMIL compared to the T1-CON. The combination of exogenous enzymes in the diet positively modulate nutritional biomarkers, in addition to benefits in the lipid and oxidative profile meat.

2.
World J Microbiol Biotechnol ; 39(12): 357, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882859

ABSTRACT

Dental biofilms represent a serious oral health problem playing a key role in the development of caries and other oral diseases. In the present work, we cloned and expressed in E. coli two glucanases, Prevotella melaninogenica mutanase (PmGH87) and Capnocytophaga ochracea dextranase (CoGH66), and characterized them biochemically and biophysically. Their three-dimensional structures were elucidated and discussed. Furthermore, we tested the capacity of the enzymes to hydrolyze mutan and dextran to prevent formation of Streptococcus mutans biofilms, as well as to degrade pre- formed biofilms in low and abundant sugar conditions. The percentage of residual biofilm was calculated for each treatment group in relation to the control, as well as the degree of synergism. Our results suggest that both PmGH87 and CoGH66 are capable of inhibiting biofilm formation grown under limited or abundant sucrose conditions. Degradation of pre-formed biofilms experiments reveal a time-dependent effect for the treatment with each enzyme alone. In addition, a synergistic and dose-dependent effects of the combined enzymatic treatment with the enzymes were observed. For instance, the highest biomass degradation was 95.5% after 30 min treatment for the biofilm grown in low sucrose concentration, and 93.8% after 2 h treatment for the biofilm grown in sugar abundant condition. Strong synergistic effects were observed, with calculated degree of synergism of 5.54 and 3.18, respectively and their structural basis was discussed. Jointly, these data can pave the ground for the development of biomedical applications of the enzymes for controlling growth and promoting degradation of established oral biofilms.


Subject(s)
Escherichia coli , Prevotella melaninogenica , Escherichia coli/genetics , Biofilms , Sucrose
3.
Food Chem ; 365: 130460, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34237573

ABSTRACT

The ß-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The ß-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze ß-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the ß-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley ß-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley ß-glucan, and the rate of hydrolysis of ß-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.


Subject(s)
Glucans , Hordeum , Glycoside Hydrolases/metabolism , Hordeum/genetics , Hordeum/metabolism , Hydrolysis , Plant Extracts , Substrate Specificity
4.
J Biol Chem ; 296: 100385, 2021.
Article in English | MEDLINE | ID: mdl-33556371

ABSTRACT

Glycoside hydrolases (GHs) are involved in the degradation of a wide diversity of carbohydrates and present several biotechnological applications. Many GH families are composed of enzymes with a single well-defined specificity. In contrast, enzymes from the GH16 family can act on a range of different polysaccharides, including ß-glucans and galactans. SCLam, a GH16 member derived from a soil metagenome, an endo-ß-1,3(4)-glucanase (EC 3.2.1.6), can cleave both ß-1,3 and ß-1,4 glycosidic bonds in glucans, such as laminarin, barley ß-glucan, and cello-oligosaccharides. A similar cleavage pattern was previously reported for other GH16 family members. However, the molecular mechanisms for this dual cleavage activity on (1,3)- and (1,4)-ß-D-glycosidic bonds by laminarinases have not been elucidated. In this sense, we determined the X-ray structure of a presumably inactive form of SCLam cocrystallized with different oligosaccharides. The solved structures revealed general bound products that are formed owing to residual activities of hydrolysis and transglycosylation. Biochemical and biophysical analyses and molecular dynamics simulations help to rationalize differences in activity toward different substrates. Our results depicted a bulky aromatic residue near the catalytic site critical to select the preferable configuration of glycosidic bonds in the binding cleft. Altogether, these data contribute to understanding the structural basis of recognition and hydrolysis of ß-1,3 and ß-1,4 glycosidic linkages of the laminarinase enzyme class, which is valuable for future studies on the GH16 family members and applications related to biomass conversion into feedstocks and bioproducts.


Subject(s)
Bacterial Proteins/metabolism , Cellulases/metabolism , Glucans/metabolism , Bacterial Proteins/chemistry , Carbohydrate Sequence , Catalytic Domain , Cellulases/chemistry , Crystallography, X-Ray/methods , Glucans/classification , Glycosides/chemistry , Glycosides/metabolism , Hydrolysis , Molecular Dynamics Simulation , Soil Microbiology , Substrate Specificity
5.
Int J Biol Macromol ; 166: 190-199, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33164774

ABSTRACT

Cold-adapted endo-ß-1,4-glucanases hold great potential for industrial processes requiring high activity at mild temperatures such as in food processing and extraction of bioactive compounds from plants. Here, we identified and explored the specificity, mode of action, kinetic behavior, molecular structure and biotechnological application of a novel endo-ß-1,4-glucanase (XacCel8) from the phytopathogen Xanthomonas citri subsp. citri. This enzyme belongs to an uncharacterized phylogenetic branch of the glycoside hydrolase family 8 (GH8) and specifically cleaves internal ß-1,4-linkages of cellulose and mixed-linkage ß-glucans releasing short cello-oligosaccharides ranging from cellobiose to cellohexaose. XacCel8 acts in near-neutral pHs and in a broad temperature range (10-50 °C), which are distinguishing features from conventional thermophilic ß-1,4-glucanases. Interestingly, XacCel8 was greatly stimulated by cobalt ions, which conferred higher conformational stability and boosted the enzyme turnover number. The potential application of XacCel8 was demonstrated in the caffeine extraction from guarana seeds, which improved the yield by 2.5 g/kg compared to the traditional hydroethanolic method (HEM), indicating to be an effective additive in this industrial process. Therefore, XacCel8 is a metal-stimulated and cold-adapted endo-ß-1,4-glucanase that could be applied in a diverse range of biotechnological processes under mild conditions such as caffeine extraction from guarana seeds.


Subject(s)
Bacterial Proteins/metabolism , Caffeine/chemistry , Cold Temperature , Glucan 1,4-beta-Glucosidase/metabolism , Seeds/chemistry , Bacterial Proteins/chemistry , Biocatalysis , Caffeine/analysis , Cobalt/chemistry , Enzyme Stability , Glucan 1,4-beta-Glucosidase/chemistry , Paullinia/chemistry , Xanthomonas/enzymology
6.
Int J Biol Macromol ; 147: 521-526, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31926231

ABSTRACT

Microorganisms native to mangroves are expected to contain enzymes capable of hydrolyzing different carbon sources. However, most of these microorganisms aren't cultivable; hence, alternative techniques as metagenomics are tools for studying and obtaining some of the natural genomes, genes and enzymes of biotechnological interest. The ß-glucanase was produced using a metagenomic clone of mangrove sediments and detected by functional screening on carboxymethylcellulose substrate. The enzyme was purified by cation exchange chromatography. The peptides detected by mass spectrometry showed 20% identity with the polypeptide deduced from the genomic fragment sequenced. The ORF identified as BglfosD9 possessed 729 bp and the encoded protein showed predicted MW and pI of 28kD and 6.8, respectively. The enzyme was active in a wide range of pH (5-10) with optimum pH at 8, had relative activity greater than 50% at all temperatures tested (5-90 °C), was stable at temperatures of 5, 50 and 90 °C and showed excellent relative activity at high NaCl concentrations. This ß-glucanase also showed high relative activity in the presence of SDS and it could hydrolyze ß-glucan, CMC and Avicel as substrates. These findings support the idea of a new thermostable and active enzyme at basic pH from metagenomic library of mangrove sediment.


Subject(s)
Bacillus , Geologic Sediments/microbiology , Glycoside Hydrolases , Wetlands , Bacillus/enzymology , Bacillus/genetics , Carboxymethylcellulose Sodium/chemistry , Cloning, Molecular , Enzyme Stability , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hot Temperature , Metagenome , Salinity
7.
Biomolecules ; 9(12)2019 11 26.
Article in English | MEDLINE | ID: mdl-31779176

ABSTRACT

Trichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. ß-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have ß-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-ß-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.


Subject(s)
Antibiosis/genetics , Cell Wall/enzymology , Cell Wall/metabolism , Endo-1,3(4)-beta-Glucanase/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Ascomycota/metabolism , Benomyl/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Chitin/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal/genetics , Genomics , Microscopy, Fluorescence , Phylogeny , Rhizoctonia/metabolism , Trichoderma/drug effects , Trichoderma/pathogenicity , beta-Glucans/metabolism
8.
Electron. j. biotechnol ; Electron. j. biotechnol;41: 60-71, sept. 2019. graf, tab, ilus
Article in English | LILACS | ID: biblio-1087169

ABSTRACT

Background: The aim of this work was to purify and characterize exo-ß-1,3-glucanase, namely, TtBgnA, from the thermophilic fungus Thielavia terrestris Co3Bag1 and to identify the purified enzyme. Results: The thermophilic biomass-degrading fungus T. terrestris Co3Bag1 displayed ß-1,3-glucanase activity when grown on 1% glucose. An exo-ß-1,3-glucanase, with an estimated molecular mass of 129 kDa, named TtBgnA, was purified from culture filtrates from T. terrestris Co3Bag1. The enzyme exhibited optimum activity at pH 6.0 and 70°C and half-lives (t1/2) of 54 and 37 min at 50 and 60°C, respectively. Substrate specificity analysis showed that laminarin was the best substrate studied for TtBgnA. When laminarin was used as the substrate, the apparent KM and Vmax values were determined to be 2.2 mg mL-1 and 10.8 U/mg, respectively. Analysis of hydrolysis products by thin-layer chromatography (TLC) revealed that TtBgnA displays an exo mode of action. Additionally, the enzyme was partially sequenced by tandem mass spectrometry (MS/MS), and the results suggested that TtBgnA from T. terrestris Co3Bag1 could be classified as a member of the GH-31 family. Conclusions: This report thus describes the purification and characterization of TtBgnA, a novel exo-ß-1,3-glucanase of the GH-31 family from the thermophilic fungus T. terrestris Co3Bag1. Based on the biochemical properties displayed by TtBgnA, the enzyme could be considered as a candidate for potential biotechnological applications.


Subject(s)
Sordariales/enzymology , Glucan 1,3-beta-Glucosidase/chemistry , Temperature , Enzyme Stability , Cellulases , Glucan 1,3-beta-Glucosidase/isolation & purification , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry , Enzyme Assays , Hydrogen-Ion Concentration
9.
Front Physiol ; 10: 122, 2019.
Article in English | MEDLINE | ID: mdl-30873040

ABSTRACT

Insect ß-1,3-glucanases belong to Glycoside Hydrolase Family 16 (GHF16) and are involved in digestion of detritus and plant hemicellulose. In this work, we investigated the role of GHF16 genes in Aedes aegypti larvae, due to their detritivore diet. Aedes aegypti genome has six genes belonging to GHF16 (Aae GH16.1 - Aae GH16.6), containing two to six exons. Sequence analysis suggests that five of these GHF16 sequences (Aae GH16.1, 2, 3, 5, and 6) contain the conserved catalytic residues of this family and correspond to glucanases. All genomes of Nematocera analyzed showed putative gene duplications corresponding to these sequences. Aae GH16.4 has no conserved catalytic residues and is probably a ß-1,3-glucan binding protein involved in the activation of innate immune responses. Additionally, Ae. aegypti larvae contain significant ß-1,3-glucanase activities in the head, gut and rest of body. These activities have optimum pH about 5-6 and molecular masses between 41 and 150 kDa. All GHF16 genes above showed different levels of expression in the larval head, gut or rest of the body. Knock-down of AeGH16.5 resulted in survival and pupation rates lower than controls (dsGFP and water treated). However, under stress conditions, severe mortalities were observed in AeGH16.1 and AeGH16.6 knocked-down larvae. Enzymatic assays of ß-1,3-glucanase in AeGH16.5 silenced larvae exhibited lower activity in the gut and no change in the rest of the body. Chromatographic activity profiles from gut samples after GH16.5 silencing showed suppression of enzymatic activity, suggesting that this gene codes for the digestive larval ß-1,3-glucanase of Ae. aegypti. This gene and enzyme are attractive targets for new control strategies, based on the impairment of normal gut physiology.

10.
Rev. biol. trop ; Rev. biol. trop;66(3): 1034-1045, jul.-sep. 2018. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-977364

ABSTRACT

Abstract The cellulolytic activity of fungi growing in the subtropical rainforest of Misiones (Argentina) represents a challenge in the technological development of the production of cellulosic bioethanol in the region using native sources. These fungi are promising to obtain sustainable enzyme cocktails using their enzymes. Cellulolytic ability of 22 white-rot fungi isolated from the subtropical rainforest of Misiones-Argentina in agar medium with two types of cellulosic substrates, carboxy-methylcellulose or crystalline cellulose, were comparatively analyzed, and the activity of two cellulolytic enzymes was evaluated in liquid medium. Although all isolates were able to grow and degrade both substrates in agar medium, and to produce total cellulase Filter paper (FPase) and endo-β-1,4-glucanase (EG) activities in broth, the isolate Irpex sp. LBM 034 showed the greatest enzymatic levels (FPase, 65.45 U L-1; EG, 221.21 U L-1). Therefore, the ITS sequence of this fungus was sequenced and analyzed through a phylogenetic analysis. These results indicate that the isolate LBM 034, corresponding to Irpex lacteus, has a promising cellulolytic ability and enzymes such as EG useful in sustainable saccharification of cellulosic materials in the region. Rev. Biol. Trop. 66(3): 1034-1045. Epub 2018 September 01.


Resumen La actividad celulolítica de hongos autóctonos asociados a la selva subtropical de Misiones (Argentina) representa un desafío en el desarrollo tecnológico de la producción de bioetanol celulósico en la región, mediante el uso de recursos nativos. Los sistemas enzimáticos de estos hongos tienen potencial aplicación en la obtención de cocteles enzimáticos rentables. La habilidad celulolítica de 22 hongos causantes de pudrición blanca se analizó comparativamente, que fueron aislados de la selva subtropical de Misiones-Argentina, en cultivos agarizados con dos tipos de sustratos celulósicos, carboxi-metilcelulosa o celulosa cristalina. También se evaluó la actividad de dos enzimas celulolíticas en cultivos líquidos. Aunque todos los aislamientos fueron capaces de crecer y degradar ambos sustratos en medio agarizado y revelar actividad celulolítica total y endo-β-1,4-glucanasa en cultivo líquido, el aislamiento Irpex sp. LBM 034 mostró las mayores actividades en papel de filtro con 65.45 U L-1 y endo-β-1,4-glucanasa con 221.21 U L-1, respectivamente. Por tanto, se secuenció y analizó la secuencia ITS de este hongo a través de un análisis filogenético. Estos resultados indicaron que el aislamiento LBM 034, correspondiente a Irpex lacteus, tiene una habilidad celulolítica prometedora en la producción de enzimas con actividad endo-β-1,4-glucanasa, útil en la sacarificación sustentable de materiales celulósicos de la región.


Subject(s)
Basidiomycota , Polyporales , Fungi , Argentina , beta-Glucosidase , Cellulosomes
11.
World J Microbiol Biotechnol ; 34(6): 84, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858918

ABSTRACT

Cellulolytic enzymes have been studied in several organisms, such as insects, molluscs and other organisms, which can have enzymes endogenously produced or by symbiotic microorganisms. These enzymes are responsible for breaking down the cellulosic material upon which these organisms feed, probably with the aim of assimilating the sugars and nutrients. As Teredinidae bivalves grown in mangrove trees, this study aimed to measure endo-ß-1,4-glucanase activity in different organs and its content. Endo-ß-1,4-glucanase activity was detected in different organs of the Teredinidae bivalves, including gills and digestive organs tissues and its content. Moreover, organisms such as teredinids grow up inside wood and this process could perhaps be related to creating growth space. All the endoglucanase extracts, from organs tissues and contents, showed maximum activity at 40 °C. The maximum activity was observed at pH 5.5 for all the extracts, except for intestine tissue, which maximum was at pH 6. Moreover, some of the extracts showed a different profile of the activity as a pH influence, suggesting different distribution of enzymes over the digestive system of the teredinids. The results suggested that the endo-ß-1,4-glucanase from Teredinidae could be applied in process that requires low temperature, such as, simultaneous saccharification and fermentation, since it presents lower optimum temperature in comparison to enzymes from terrestrial microorganisms.


Subject(s)
Bivalvia/enzymology , Cellulase/metabolism , Animals , Bivalvia/chemistry , Cellulase/chemistry , Enzyme Stability , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/enzymology , Hot Temperature , Hydrogen-Ion Concentration
12.
Rev. bras. saúde prod. anim ; 19(2): 193-206, Jun.2018. tab
Article in English | VETINDEX | ID: biblio-1493769

ABSTRACT

This study aimed at evaluating the use of exogenous enzymes in diets with Saccharomyces cerevisiae and their impact on zootechnical performance, carcass yield, intestinal histomorphometry and of broiler diets in the initial phase. A completely randomized design was used in a 2×3 + 1 factorial arrangement, with two levels of enzyme complex (EC), (0 and 200g / ton), three yeast levels (0, 6 and 12%) and a control diet, making up seven treatments, with five replicates of 20 broilers per experimental unit. We evaluated the performance (feed intake, weight gain and feed conversion ratio), carcass yield and cuts, histomorphometry of the small intestine (height, circumference and width of villi, height and width of the crypt, thickness of the intestinal muscle wall and villi/crypt relationship). From 1 to 7 and 1 to 21 days, the inclusion of yeast led to reduced broiler performance. At 21 days, the addition of EC resulted in an increase of (p 0.05) in the thickness of the muscular wall of the duodenum and decreased the width of the crypt in the ileum. The 12% level of yeast without the EC provided a thicker jejunum intestinal muscle wall when compared to the positive control. There was no significant effect on carcass yield and cuts between treatments. In conclusion, the inclusion of yeast reduces performance from 1-21 days. The enzyme complex and yeast does not change the performance or carcass yield, however, it does bring benefits to the intestinal mucosa.


Objetivou-se avaliar o uso de enzimas exógenas em dietas com Saccharomyces cerevisiae sobre o desempenho zootécnico, rendimento de carcaça e histomorfometria intestinal de frangos de corte na fase inicial. Utilizou-se o delineamento inteiramente casualizado em esquema fatorial 2×3+1, sendo dois níveis de complexo enzimático (CE), (0 e 200g/ton), três níveis de levedura (0, 6 e 12%) e uma dieta controle, perfazendo sete tratamentos, cinco repetições de 20 aves por unidade experimental. Foram avaliados o desempenho (consumo de ração, ganho de peso e conversão alimentar), rendimento de carcaça e cortes e a histomorfometria do intestino delgado (altura, perímetro e largura de vilo, altura e largura de cripta, espessura da parede muscular intestinal e relação vilo/cripta). Na fase de 1 a 7 e de 1 a 21 dias, a inclusão de levedura na dieta promoveu redução no desempenho dos frangos. Aos 21 dias a adição de CE resultou em aumento (p 0,05) da espessura da parede muscular do duodeno, e reduziu a largura da cripta no íleo. O nível de 12% de levedura sem o CE proporcionou parede muscular intestinal do jejuno mais espessa quando comparada ao controle positivo. Não houve efeito significativo para rendimento de carcaça e cortes entre os tratamentos. Conclui-se que, a inclusão de levedura reduz o desempenho de 1 a 21 dias. A adição de complexo enzimático e levedura em dietas para frangos de corte não melhora o desempenho e rendimento de carcaça, todavia, beneficia à mucosa intestinal.


Subject(s)
Animals , Ascomycota , Enzymes , Chickens , Yeasts , Animal Feed , Animal Nutritional Physiological Phenomena
13.
R. bras. Saúde Prod. Anim. ; 19(2): 193-206, Jun.2018. tab
Article in English | VETINDEX | ID: vti-735224

ABSTRACT

This study aimed at evaluating the use of exogenous enzymes in diets with Saccharomyces cerevisiae and their impact on zootechnical performance, carcass yield, intestinal histomorphometry and of broiler diets in the initial phase. A completely randomized design was used in a 2×3 + 1 factorial arrangement, with two levels of enzyme complex (EC), (0 and 200g / ton), three yeast levels (0, 6 and 12%) and a control diet, making up seven treatments, with five replicates of 20 broilers per experimental unit. We evaluated the performance (feed intake, weight gain and feed conversion ratio), carcass yield and cuts, histomorphometry of the small intestine (height, circumference and width of villi, height and width of the crypt, thickness of the intestinal muscle wall and villi/crypt relationship). From 1 to 7 and 1 to 21 days, the inclusion of yeast led to reduced broiler performance. At 21 days, the addition of EC resulted in an increase of (p 0.05) in the thickness of the muscular wall of the duodenum and decreased the width of the crypt in the ileum. The 12% level of yeast without the EC provided a thicker jejunum intestinal muscle wall when compared to the positive control. There was no significant effect on carcass yield and cuts between treatments. In conclusion, the inclusion of yeast reduces performance from 1-21 days. The enzyme complex and yeast does not change the performance or carcass yield, however, it does bring benefits to the intestinal mucosa.(AU)


Objetivou-se avaliar o uso de enzimas exógenas em dietas com Saccharomyces cerevisiae sobre o desempenho zootécnico, rendimento de carcaça e histomorfometria intestinal de frangos de corte na fase inicial. Utilizou-se o delineamento inteiramente casualizado em esquema fatorial 2×3+1, sendo dois níveis de complexo enzimático (CE), (0 e 200g/ton), três níveis de levedura (0, 6 e 12%) e uma dieta controle, perfazendo sete tratamentos, cinco repetições de 20 aves por unidade experimental. Foram avaliados o desempenho (consumo de ração, ganho de peso e conversão alimentar), rendimento de carcaça e cortes e a histomorfometria do intestino delgado (altura, perímetro e largura de vilo, altura e largura de cripta, espessura da parede muscular intestinal e relação vilo/cripta). Na fase de 1 a 7 e de 1 a 21 dias, a inclusão de levedura na dieta promoveu redução no desempenho dos frangos. Aos 21 dias a adição de CE resultou em aumento (p 0,05) da espessura da parede muscular do duodeno, e reduziu a largura da cripta no íleo. O nível de 12% de levedura sem o CE proporcionou parede muscular intestinal do jejuno mais espessa quando comparada ao controle positivo. Não houve efeito significativo para rendimento de carcaça e cortes entre os tratamentos. Conclui-se que, a inclusão de levedura reduz o desempenho de 1 a 21 dias. A adição de complexo enzimático e levedura em dietas para frangos de corte não melhora o desempenho e rendimento de carcaça, todavia, beneficia à mucosa intestinal.(AU)


Subject(s)
Animals , Chickens , Ascomycota , Enzymes , Animal Feed , Yeasts , Animal Nutritional Physiological Phenomena
14.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 801-808, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889172

ABSTRACT

ABSTRACT The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enzyme. The KG35 gene, containing a novel glycosyl hydrolase family 5 cellulase domain, was isolated and functionally characterized. The novel glycosyl hydrolase family 5 cellulase gene is composed of a 963-bp open reading frame encoding a protein of 320 amino acid residues (35.1 kDa). The deduced amino acid sequence showed the highest sequence identity (58%) for sequences from the glycosyl hydrolase family 5 cellulases. The novel glycosyl hydrolase family 5 cellulase gene was overexpressed in Escherichia coli. Substrate specificity analysis revealed that this recombinant glycosyl hydrolase family 5 cellulase functions as an endo-β-1,4-glucanase. The recombinant KG35 endo-β-1,4-glucanase showed optimal activity within the range of 30-50 °C at a pH of 6-7. The thermostability was retained and the pH was stable in the range of 30-50 °C at a pH of 5-7.


Subject(s)
Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteria/enzymology , Cellulase/chemistry , Cellulase/genetics , Rumen/microbiology , Bacterial Proteins/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cellulase/metabolism , Cloning, Molecular , Enzyme Stability , Gastrointestinal Microbiome , Goats , Hydrogen-Ion Concentration , Metagenome , Metagenomics
15.
Braz. J. Microbiol. ; 48(4): 801-808, Oct.-Dec. 2017. tab, ilus, graf
Article in English | VETINDEX | ID: vti-17476

ABSTRACT

ABSTRACT The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enzyme. The KG35 gene, containing a novel glycosyl hydrolase family 5 cellulase domain, was isolated and functionally characterized. The novel glycosyl hydrolase family 5 cellulase gene is composed of a 963-bp open reading frame encoding a protein of 320 amino acid residues (35.1 kDa). The deduced amino acid sequence showed the highest sequence identity (58%) for sequences from the glycosyl hydrolase family 5 cellulases. The novel glycosyl hydrolase family 5 cellulase gene was overexpressed in Escherichia coli. Substrate specificity analysis revealed that this recombinant glycosyl hydrolase family 5 cellulase functions as an endo-β-1,4-glucanase. The recombinant KG35 endo-β-1,4-glucanase showed optimal activity within the range of 30-50 °C at a pH of 6-7. The thermostability was retained and the pH was stable in the range of 30-50 °C at a pH of 5-7.(AU)


Subject(s)
Rumen/microbiology , Rumen/virology , Goats/microbiology , Goats/virology , Cellulase/classification , Cellulase/isolation & purification
16.
Braz J Microbiol ; 48(4): 801-808, 2017.
Article in English | MEDLINE | ID: mdl-28689814

ABSTRACT

The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enzyme. The KG35 gene, containing a novel glycosyl hydrolase family 5 cellulase domain, was isolated and functionally characterized. The novel glycosyl hydrolase family 5 cellulase gene is composed of a 963-bp open reading frame encoding a protein of 320 amino acid residues (35.1kDa). The deduced amino acid sequence showed the highest sequence identity (58%) for sequences from the glycosyl hydrolase family 5 cellulases. The novel glycosyl hydrolase family 5 cellulase gene was overexpressed in Escherichia coli. Substrate specificity analysis revealed that this recombinant glycosyl hydrolase family 5 cellulase functions as an endo-ß-1,4-glucanase. The recombinant KG35 endo-ß-1,4-glucanase showed optimal activity within the range of 30-50°C at a pH of 6-7. The thermostability was retained and the pH was stable in the range of 30-50°C at a pH of 5-7.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cellulase/chemistry , Cellulase/genetics , Rumen/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Cellulase/metabolism , Cloning, Molecular , Enzyme Stability , Gastrointestinal Microbiome , Goats , Hydrogen-Ion Concentration , Metagenome , Metagenomics
17.
Plant Physiol Biochem ; 118: 245-255, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28651230

ABSTRACT

The worldwide-distributed leaf peach curl disease is caused by the biotroph Taphrina deformans. To characterize the plant-fungus interaction, resistant and susceptible Prunus persica genotypes grown in the orchard were studied. Asymptomatic leaves were tested for fungal presence. In all resistant leaves analyzed the fungus was not detected. Conversely, leaves from the susceptible genotype were categorized according to the presence or absence of the pathogen. Comparative metabolomic analysis disclosed the metabolite composition associated with resistant and susceptible interactions, and of compounds involved in fungal growth inhibition such as chlorogenic acid, whose in vitro antifungal activity was verified in this work. Differential proteome studies revealed that chloroplasts are important site of plant defense responses against T. deformans. Members of the Bet-v1-like family protein differentially responded to the pathogen. Extracellular pathogenesis-related proteins, evaluated by qRT-PCR, and an enone oxidoreductase are constitutively present in leaves of resistant trees and could be related to fungal resistance. This study is a global view of the changes in the metabolome, proteome and transcripts related to plant defense in naturally infected leaves of susceptible plants during the asymptomatic stage. Additionally, it provides clues to the successful molecular mechanisms operating in resistant plants, which neither develop the disease nor harbor the pathogen.


Subject(s)
Ascomycota , Disease Resistance/genetics , Genotype , Metabolome/genetics , Proteome , Prunus persica , Proteome/genetics , Proteome/metabolism , Proteomics , Prunus persica/genetics , Prunus persica/metabolism , Prunus persica/microbiology
18.
AMB Express ; 7(1): 95, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28500590

ABSTRACT

The production of recombinant biopharmaceutical proteins is a multi-billion dollar market. Protein recovery represents a major part of the production costs. Pichia pastoris is one of the microbial systems most used for the production of heterologous proteins. The use of a cold-induced promoter to express lytic enzymes in the yeast after the growth stage could reduce protein recovery costs. This study shows that a cold-shock can be applied to induce lysis of the yeast cells. A strain of P. pastoris was constructed in which the endogenous eng gene encoding a putative endo-ß-1,3-glucanase was overexpressed using the cold-shock induced promoter of the cctα gene from Saccharomyces cerevisiae. In the transgenic P. pastoris, the expression of eng increased 3.6-fold after chilling the cells from 30 to 4 °C (cold-shock stage) followed by incubation for 6 h (eng expression stage). The culture was heated to 30 °C for 6 h (ENG synthesis stage) and kept at 37 °C for 24 h (lysis stage). After this procedure the cell morphology changed, spheroplasts were obtained and cellular lysis was observed. Thus, a clone of P. pastoris was obtained, which undergoes autolysis after a cold-shock.

19.
Infect Genet Evol ; 48: 58-63, 2017 03.
Article in English | MEDLINE | ID: mdl-27894990

ABSTRACT

Pythium insidiosum is an important oomycete due to its ability to infect humans and animals. It causes pythiosis, a disease of difficult treatment that occurs more frequently in humans in Thailand and in horses in Brazil. Since cell-wall components are frequently related to host shifts, we decided here to use sequences from the exo-1,3-ß-glucanase gene (exo1), which encodes an immunodominant protein putatively involved in cell wall remodeling, to investigate the microevolutionary relationships of Brazilian and Thai isolates of P. insidiosum. After neutrality ratification, the phylogenetic analyses performed through Maximum parsimony (MP), Neighbor-joining (NJ), Maximum likelihood (ML), and Bayesian analysis (BA) strongly supported Thai isolates being paraphyletic in relation to those from Brazil. The structure recovered by these analyses, as well as by Spatial Analysis of Molecular Variance (SAMOVA), suggests the subdivision of P. insidiosum into three clades or population groups, which are able to explain almost 81% of the variation encountered for exo1. Moreover, the two identified Thai clades were almost as strongly differentiated between each other, as they were from the Brazilian clade, suggesting an ancient Asian subdivision. The derived positioning in the phylogenetic tree, linked to the lower diversity values and the recent expansion signs detected for the Brazilian clade, further support this clade as derived in relation to the Asian populations. Thus, although some patterns presented here are compatible with those recovered with different molecular markers, exo1 was revealed to be a good marker for studying evolution in Pythium, providing robust and strongly supported results with regard to the patterns of origin and diversification of P. insidiosum.


Subject(s)
Glucan 1,3-beta-Glucosidase/genetics , Pythium/genetics , Brazil , Evolution, Molecular , Genetic Variation , Phylogeny , Pythium/enzymology , Thailand
20.
Braz. j. microbiol ; Braz. j. microbiol;47(1): 25-32, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775113

ABSTRACT

Abstract Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.


Subject(s)
Chitinases , Soil Microbiology , Trichoderma/enzymology , Trichoderma/growth & development , Basidiomycota/metabolism , Carbon/metabolism , Cell Wall/metabolism , Chitin/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration , Nitrogen/metabolism , Rhizosphere , Temperature , Nicotiana , Trichoderma/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL