Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Food Chem X ; 24: 101806, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39296482

ABSTRACT

Glyphosate and glufosinate are the most widely used herbicides worldwide. We developed a simple and rapid analytical method for detecting glyphosate, glufosinate, and their metabolites (N-acetyl glyphosate: Gly-A, N-acetyl glufosinate: Glu-A, and 3-(hydroxymethylphosphinyl)propanoic acid: MPPA) in soybeans. The method involved extraction with water, trapping in a mini-column containing polymer-based resin with strong anion exchange groups, dehydration with acetonitrile, and solid-phase analytical derivatization at ambient temperature for 1 min using N-(tert-butyldimethylsilyl)-N-methyl trifluoroacetamide (MTBSTFA), followed by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. This method offers a straightforward and rapid analysis, using on-solid phase dehydration and rapid derivatization at an ambient temperature with MTBSTFA, yielding reliable results for glyphosate, glufosinate, and their metabolites. The method was applied to both domestic and imported soybean samples. Glyphosate, glufosinate, and Glu-A were detected in imported feed soybeans and processed soybean meal for feed use, reflecting the current conditions of GM soybean cultivation.

2.
J Hazard Mater ; 479: 135674, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217929

ABSTRACT

Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days. We found GLAM addition damaged cell and reduced chlorophyll a content in Hydrilla verticillata leaves, and increased ammonium and phosphorus in water (p < 0.001). The α-diversity increased in bacterial community but decreased in eukaryotic community with GLAM exposure. Neutral community models explained 62.3 % and 55.0 % of the variance in bacterial and eukaryotic communities, respectively. Many GLAM micro-biomarkers were obtained, including some clades from Proteobacteria, Bacteroidete, Actinobacteriota, Phragmoplastophyta, Annelida and Arthropoda. Redundancy analysis revealed that GLAM concentration was positively correlated to Flavobacterium, Gomphonema and Closterium but negatively to Methyloglobulus and Methylocystis. Network analysis revealed that 15 mg/L GLAM disturbed the interactions among phytoplankton, protozoa, metazoan and bacteria and reduced the stability of the microbial communities compared to 8 mg/L GLAM. GLAM shaped the nitrogen and phosphorus cycle related bacterial genes. This study highlights that herbicides are non-neglectable factors affecting the efficiency of aquatic ecological restoration in agricultural areas to control agricultural non-point source pollution.


Subject(s)
Aminobutyrates , Biofilms , Hydrocharitaceae , Nitrogen , Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Hydrocharitaceae/microbiology , Hydrocharitaceae/metabolism , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Aminobutyrates/analysis , Microbiota , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Herbicides/analysis , Ammonium Compounds/analysis , Wetlands
3.
Pestic Biochem Physiol ; 204: 106083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277396

ABSTRACT

Eleusine indica is one of the most troublesome weeds in farmland worldwide, especially in Citrus Orchard of China. Glufosinate, as an efficient non-selective broad-spectrum herbicide, has been widely utilized for the control of E. indica in Citrus Orchard. The E. indica resistant population (R) was collected from a Citrus Orchard in Yichang City in Hubei province, China. Bioassay experiments showed that the R plants exhibited 3-fold resistance to glufosinate compared with the E. indica susceptible population (S). No known glutamine synthetase (GS) gene mutation associated with glufosinate resistance was found in R plants. And there was also no significant difference in GS activity between R and S plants. Those results indicated that the resistance to glufosinate in R did not involve target-site resistance. However, glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) plus glufosinate gave a better control of R plants compared with glufosinate treatment alone. Moreover, both before and after glufosinate treatment, the GST activity in R plants was significantly higher than that in S plants. By RNA-seq, the expression of GSTU6 and GST4 up-regulated in R plants relative to S plants with or without glufosinate treatment. They were also significantly up-regulated expression in E. indica field resistant populations compared with S population. In summary, the study elucidated that R plants developed metabolic resistance to glufosinate involving GST. And GSTU6 and GST4 genes may play an important role in this glufosinate metabolic resistance. The research results provide a theoretical basis for a deeper understanding of resistance mechanism to glufosinate in E. indica.


Subject(s)
Aminobutyrates , Eleusine , Herbicide Resistance , Herbicides , Aminobutyrates/pharmacology , Herbicides/pharmacology , Herbicide Resistance/genetics , Eleusine/genetics , Eleusine/metabolism , Eleusine/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110036, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251011

ABSTRACT

Herbicide exposure poses a higher risk to reptiles due to their frequent contact with soil. Besides, food restriction is also a common environmental pressure that can seriously affect the survival of reptiles. The adaptive strategies of reptiles in the face of emerging herbicide pollution and food shortage challenges are not yet known. Therefore, Eremias Argus (a kind of small reptile) was selected as the model to simulate the real scenario of food shortage in lizards, aiming to explore the comprehensive impact of glufosinate-ammonium (GLA: an emerging herbicide) and food restriction on lizards. The results revealed that lizards often regulate their physiological and biochemical activities through body thermal selection and tend to choose lower body temperature, reduce digestibility, and actively participate in fat energy mobilization to avoid oxidative damage in the state of hunger, finally in order to achieve homeostasis. However, herbicide GLA disrupted the lizards' efforts to resist the stress of food shortage and interfered with the normal thermoregulation and energy mobilization strategies of lizards facing starvation. The results of this study would improve our understanding of the impacts of Lizards under extreme stresses, help supplement reptile toxicology data and provide scientific basis for the risk assessment of herbicide GLA.

5.
Biosens Bioelectron ; 267: 116739, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39270359

ABSTRACT

In response to the pervasive issue of herbicide pollution in environmental water bodies, particularly from herbicides used extensively in agriculture, traditional chemical-based water quality analysis methods have proven costly and time-consuming, often failing to meet regulatory standards. To overcome these limitations, global environmental agencies have turned to rapidly-growing species like duckweed as bioindicators for herbicide and pesticide contamination. However, conventional biological assessment methods, such as the 168-h duckweed growth inhibition test, are slow and lack real-time monitoring capabilities. To address this challenge, we developed an innovative approach by integrating opto-mechanical technology with duckweed to create a cost-effective biosensor for herbicide detection, priced under $10 USD per system. This advancement allows for the rapid detection of herbicide impacts on duckweed growth within just 48 h, significantly improving upon traditional methods. Our biosensor achieves detection limits of 10 ppm (p < 0.05) for glyphosate and 1 ppm (p < 0.05) for glufosinate, both prominent herbicides globally. This mini-biosensing platform offers a practical alternative to the official method, which requires 168 h and higher thresholds (36.4 ppm for glyphosate and 34.0 ppm for glufosinate) for routine environmental analysis. Thus, these duckweed-based optical biosensors represent a promising advancement in environmental monitoring, enhancing accessibility and efficacy for widespread adoption globally.

6.
J Forensic Leg Med ; 106: 102732, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39089135

ABSTRACT

Glufosinate is a widely and increasingly used non-selective, broad-spectrum herbicide. Although cases of glufosinate poisoning are frequently reported, they are rarely documented in forensic case reports, particularly in fatal instances. The present study examined six cases of glufosinate poisoning, including a fatal case involving a 25-year-old female found deceased by the roadside, with an empty 1000 mL bottle labeled "glufosinate" by her side. Biological specimens such as plasma or cardiac blood, gastric contents, and liver tissues were collected for quantitative analysis of glufosinate levels using LC-MS/MS. In five cases of acute glufosinate poisoning, glufosinate plasma concentrations ranged from 0.62 to 3.92 µg/mL. In the fatal case, the concentrations of glufosinate in cardiac blood, gastric contents, and liver tissues were 8.41 µg/mL, 31.25 µg/mL, and 66.1 µg/g, respectively. The pathological autopsy concluded that the cause of death was acute cardio-respiratory failure due to glufosinate poisoning, characterized by multi-organ congestion without specific pathological findings. The toxicological data provided in this study aim to serve as a critical reference for future clinical treatment and forensic validation of glufosinate poisoning-related deaths.


Subject(s)
Aminobutyrates , Forensic Toxicology , Gastrointestinal Contents , Herbicides , Liver , Humans , Female , Adult , Liver/chemistry , Liver/pathology , Gastrointestinal Contents/chemistry , Aminobutyrates/poisoning , Aminobutyrates/analysis , Aminobutyrates/blood , Herbicides/poisoning , Herbicides/analysis , Chromatography, Liquid , Male , Middle Aged , Young Adult , Tandem Mass Spectrometry
7.
Plant Environ Interact ; 5(3): e10154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933086

ABSTRACT

A putative glufosinate-resistant Amaranthus palmeri population was reported in 2015 in Anson County, North Carolina. The results from dose-response assays conducted in the field suggested plants were surviving lethal rates of glufosinate. Dose-response assays conducted in the glasshouse determined the Anson County accession exhibited reduced susceptibility to glufosinate compared to three glufosinate-susceptible populations. The LD50 values (210-316 g ai ha-1) for the Anson County population were always higher than the LD50 values (118-158 g ai ha-1) for the tested susceptible populations from the dose-response assays. Anson County plants that survived lethal glufosinate rates were reciprocally crossed with susceptible plants to create F1 genotypes and treated with a lethal rate of glufosinate (267 g ai ha-1; ascertained from glasshouse dose-response assay) to determine the distribution of injury and survival for each cross compared to a cross of susceptible parents. The distribution of injury was non-normal for the crosses containing an Anson County plant compared to the cross with a susceptible parent. Survival was 68%-84% for crosses containing an Anson County plant, whereas the survival was significantly reduced to 35% for the susceptible plant cross. Chi-square goodness of fit tests were used to test inheritance models to describe the responses of the genotypes. The resistant × susceptible crosses were best described with a heterozygous two loci with incomplete dominance model compared to the resistant × resistant cross that was best described with a heterozygous single locus with incomplete dominance model. The Anson County population has evolved resistance to glufosinate that is heritable and likely conferred by an oligogenic mechanism with incomplete dominance.

8.
J Hazard Mater ; 473: 134542, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776809

ABSTRACT

Extensively applied glufosinate (GLU) will trigger molecular alterations in nontarget tea plants (Camellia sinensis), which inadvertently disturbs metabolites and finally affects tea quality. The mechanistic response of tea plants to GLU remains unexplored. This study investigated GLU residue behavior, the impact on photosynthetic capacity, specialized metabolites, secondary pathways, and transcript levels in tea seedlings. Here, GLU mainly metabolized to MPP and accumulated more in mature leaves than in tender ones. GLU catastrophically affected photosynthesis, leading to leaf chlorosis, and decreased Fv/Fm and chlorophyll content. Physiological and biochemical, metabolomics, and transcriptomics analyses were integrated. Showing that GLU disrupted the photosynthetic electron transport chain, triggered ROS and antioxidant system, and inhibited photosynthetic carbon fixation. GLU targeted glutamine synthetase (GS) leading to the accumulation of ammonium and the inhibition of key umami L-theanine, causing a disorder in nitrogen metabolism, especially for amino acids synthesis. Interestingly, biosynthesis of primary flavonoids was sacrificed for defensive phenolic acids and lignin formulation, leading to possible losses in nutrition and tenderness in leaves. This study revealed the defense intricacies and potential quality deterioration of tea plants responding to GLU stress. Valuable insights into detoxification mechanisms for non-target crops post-GLU exposure were offered.


Subject(s)
Aminobutyrates , Camellia sinensis , Photosynthesis , Plant Leaves , Camellia sinensis/genetics , Camellia sinensis/metabolism , Camellia sinensis/drug effects , Aminobutyrates/toxicity , Plant Leaves/metabolism , Plant Leaves/drug effects , Photosynthesis/drug effects , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Stress, Physiological , Metabolomics , Gene Expression Regulation, Plant/drug effects , Seedlings/drug effects , Seedlings/metabolism , Herbicides/toxicity , Multiomics , Glutamates
9.
J Chromatogr A ; 1725: 464957, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38703458

ABSTRACT

This study focuses on the purification and detection of glufosinate (GLUF) and its metabolites N-acetyl GLUF and MPP in plasma samples. A Dikma Polyamino HILIC column was used for the effective retention and separation of GLUF and its metabolites, and the innovative addition of a low concentration of ammonium fluoride solution to the mobile phase effectively improved the detection sensitivity of the target analytes. Monodisperse core-shell weak cation exchange (WCX)/C18 bifunctional magnetic polymer composites (Fe3O4@WCX/C18) were prepared in a controllable manner, and their morphology and composition were fully characterized. The Fe3O4@WCX/C18 microspheres were used as a magnetic solid-phase extraction (MSPE) adsorbent for the sample purification and detection of GLUF and its metabolites in plasma samples combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purification conditions of Fe3O4@WCX/C18 microspheres for GLUF and its metabolites in spiked plasma samples were optimized to achieve the best MSPE efficiency. The purification mechanisms of the target analytes in plasma samples include electrostatic attraction and hydrophobic interactions. Furthermore, the effect of the molar ratio of the two functional monomers 4-VBA and 1-octadecene in the adsorbent was optimized and it shows that the bifunctional components WCX/C18 have a synergistic effect on the determination of GLUF and its metabolites in plasma samples. In addition, the present study compared the purification performance of the Fe3O4@WCX/C18 microsphere-based MSPE method with that of the commercial Oasis WCX SPE method, and the results showed that the Fe3O4@WCX/C18 microsphere-based MSPE method established in this work had a stronger ability to remove matrix interferences. Under optimal purification conditions, the recoveries of GLUF and its metabolites in plasma were 87.6-111 % with relative standard deviations (RSDs) ranging from 0.2 % to 4.8 %. The limits of detection (LODs, S/N≥3) and limits of quantification (LOQs, S/N≥10) were 0.10-0.18 µg/L and 0.30-0.54 µg/L, respectively. The MSPE-LC-MS/MS method developed in this study is fast, simple, accurate and sensitive and can be used to confirm GLUF intoxication based not only on the detection of the GLUF prototype but also on the detection of its two metabolites.


Subject(s)
Aminobutyrates , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Aminobutyrates/blood , Aminobutyrates/chemistry , Chromatography, Liquid/methods , Limit of Detection , Polymers/chemistry , Animals , Microspheres , Adsorption , Rats , Chromatography, Ion Exchange/methods
10.
Ital J Food Saf ; 13(1): 11996, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38577579

ABSTRACT

Glyphosate and glufosinate are among the most widely used pesticides in agriculture worldwide. Their extensive use leads to the presence of their residues on crops and in the surrounding environment. Beehives, bees, and apiculture products can represent potential sources for the accumulation of these substances and their metabolites, and the consequences for bee health, as well as the level of risk to human health from consuming contaminated food, are still unclear. Furthermore, information on the contamination levels of honey and other beehive products by these compounds remains poorly documented. This study is part of a broader research effort aimed at developing specific analytical methods for monitoring the level of these contaminants in bee products. The methodology employed enabled the acquisition of preliminary information concerning the levels of glyphosate and glufosinate contamination in honey samples obtained from various retailers in Italy to assess compliance with the limits established by Regulation 293/2013. The liquid chromatography tandem mass spectrometry analysis of the 30 honey samples revealed quantifiable levels of glyphosate in eight samples, with contamination ranging from 5.4 to 138.5 ng/g. Notably, one sample of the wild-flower type showed residue levels nearly three times the maximum residue limit. Additionally, trace levels of glyphosate contamination were detected in another ten samples. It is noteworthy that glufosinate and its metabolites were not detected in any of the analyzed samples within the established method's detection ranges.

11.
J Chromatogr A ; 1722: 464846, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579612

ABSTRACT

In forensic science, glyphosate (GLYP) and glufosinate (GLUF), a class of non-selective broad-spectrum herbicides, have been frequently encountered in many fatal poisoning and suicide cases due to their widespread availability. Therefore, it is essential to develop an effective method for detecting these compounds. Some conventional methods, such as gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), have been reported to detect these compounds. However, these methods are not ideal for their time-consuming and non-sensitive feature. Herein, probe electrospray ionization (PESI) tandem mass spectrometry (MS/MS), a fast and sensitive technique, was applied for the determination of GLYP and GLUF in human blood, which can obtain analytical results within 0.5 min without derivatization and chromatographic separation. After protein precipitation of blood samples, the supernatant was mixed with isopropanol and ultra-pure water (1:1 v/v). Then, 8 µL of the mixture was introduced into the plastic sample plate for PESI-MS/MS analysis. The limits of detection (LODs) of the method were 0.50 µg/mL and 0.25 µg/mL for two analytes, and the limits of quantitation (LOQs) were both 1.00 µg/mL, which are higher than the concentration of reported poisoning and fatal cases. In the linear range of 1-500 µg/mL, the regression coefficients (r2) for GLYP and GLUF were over 0.99. The matrix effects ranged from 94.8 % to 119.5 %, and the biases were below 4.3 %. The recoveries ranged between 84.8 % and 107.4 %, and the biases were below 7.6 %. Meanwhile, the method was effectively utilized to detect and quantify the blood, urine, and other samples. Consequently, the results suggest that PESI-MS/MS is a straightforward, fast, and sensitive method for detecting GLUF and GLYP in forensics. In the future, PESI-MS/MS will become an indispensable technique for polar substances in grassroots units of public security where rapid detection is essential.


Subject(s)
Aminobutyrates , Glycine , Glyphosate , Herbicides , Limit of Detection , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Humans , Glycine/analogs & derivatives , Glycine/blood , Spectrometry, Mass, Electrospray Ionization/methods , Aminobutyrates/blood , Tandem Mass Spectrometry/methods , Herbicides/blood , Herbicides/poisoning , Reproducibility of Results
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124226, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38560950

ABSTRACT

Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.


Subject(s)
Aminobutyrates , Glyphosate , Pesticides , Organophosphorus Compounds , Fluorescence , Fluorescent Dyes , Purines , Spectrometry, Fluorescence , Copper
13.
Anal Bioanal Chem ; 416(12): 3073-3083, 2024 May.
Article in English | MEDLINE | ID: mdl-38514583

ABSTRACT

Diquat (DQ), paraquat (PQ), glufosinate (GLU), and glyphosate (GLYP) are commonly used herbicides that have been confirmed to be toxic to humans. Rapid and accurate measurements of these toxicants in clinical practice are beneficial for the correct diagnosis and timely treatment of herbicide-poisoned patients. The present study aimed to establish an efficient, convenient, and reliable method to achieve the simultaneous quantification of DQ, PQ, GLU, and GLYP in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS) without using derivatization or ion-pairing reagents. DQ, PQ, GLU, and GLYP were extracted by the rapid protein precipitation and liquid-liquid extraction method and then separated and detected by LC-MS/MS. Subsequently, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, extraction recovery, matrix effect, dilution integrity, and stability were evaluated to validate the method based on the FDA criteria. Finally, the validated method was applied to real plasma samples collected from 166 Chinese patients with herbicide poisoning. The results showed satisfactory linearity with low LOD (1 ng/mL for DQ and PQ, 5 ng/mL for GLU, and 10 ng/mL for GLYP, respectively) and low LOQ (5 ng/mL for DQ and PQ, 25 ng/mL for GLU and GLYP, respectively). In addition, the precision, accuracy, extraction recovery, and stability of the method were acceptable. The matrix effect was not observed in the analyzed samples. Moreover, the developed method was successfully applied to determine the target compounds in real plasma samples. These data provided reliable evidence for the application of this LC-MS/MS method for clinical poisoning detection.


Subject(s)
Aminobutyrates , Diquat , Glycine , Glyphosate , Herbicides , Limit of Detection , Paraquat , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Glycine/analogs & derivatives , Glycine/blood , Aminobutyrates/blood , Diquat/blood , Diquat/poisoning , Paraquat/blood , Paraquat/poisoning , Herbicides/blood , Herbicides/poisoning , Chromatography, Liquid/methods , Reproducibility of Results
14.
Article in Chinese | MEDLINE | ID: mdl-38311945

ABSTRACT

Objective: To investigate the early predictors of respiratory depression in patients with glufosinate poisoning, and provide reference for clinicians to make decisions. Methods: In March 2022, the clinical data of patients with glufosinate poisoning admitted to the intensive care unit of the Affiliated Xiangshan Hospital of Wenzhou Medical University from March 2018 to January 2022 were retrospectively analyzed. The patients were divided into respiratory depression group and non-respiratory depression group according to the occurrence of respiratory depression during hospitalization. The clinical data such as age, gender, past history, intake, initial treatment and laboratory examination were compared between the two groups. Multivariate logistic regression was used to analyze the predictors of respiratory depression in patients with glufosinate poisoning, and its predictive value was analyzed by receiver operating characteristic (ROC) curve. Results: A total of 34 patients with glufosinate poisoning were enrolled, including 13 patients in non-respiratory depression group and 21 patients in respiratory depression group. There were significant differences in intake, blood amylase and bicarbonate radical in arterial blood gas between the two groups (P<0.05). Respiratory depression occurred at 6.5-48.0 h after ingestion, with a median of 15.0 (9.5, 24.0) h. Multivariate logistic regression analysis showed that the intake of glufosinate (OR=1.440, 95%CI: 1.033-2.009, P=0.032) and bicarbonate radical in arterial blood gas (OR=0.199, 95%CI: 0.040-0.994, P=0.049) were predictors of respiratory depression in patients with glufosinate poisoning, and the area under the curve (AUC) of ROC curves were 0.936 and 0.842. The optimal cut-off values were 15.0 g (sensitivity=95.2%, specificity=76.9%) and 17.6 mmol/L (sensitivity=71.4%, specificity=84.6%), respectively. Conclusion: The intake of glufosinate and bicarbonate radical in arterial blood gas have good prediction effects on the occurrence of respiratory depression in patients with glufosinate poisoning.


Subject(s)
Aminobutyrates , Bicarbonates , Respiratory Insufficiency , Humans , Retrospective Studies , Prognosis , ROC Curve
15.
Article in English | MEDLINE | ID: mdl-38305710

ABSTRACT

A Gram-stain-positive bacterium capable of resisting 5.0 mM glufosinate, designated strain YX-27T, was isolated from a sludge sample collected from a factory in Wuxi, Jiangsu, PR China. Cells were rod-shaped, facultatively anaerobic, endospore-forming, and motile by peritrichous flagella. Growth was observed at 15-42 °C (optimum at 30 °C), pH 4.0-8.0 (optimum pH 7.0-7.5) and with 0-2.5% NaCl (w/v; optimum, 0.5 %). Strain YX-27T could tolerate up to 6.0 mM glufosinate. Strain YX-27T showed the highest 16S rRNA gene sequence similarity to Paenibacillus tianjinensis TB2019T (96.17 %), followed by Paenibacillus odorifer DSM 1539T (96.15 %), Paenibacillus sophorae S27T (96.04 %), Paenibacillus apii 7124T (96.02 %) and Paenibacillus stellifer DSM 14472T (95.87 %). The phylogenetic tree based on genome and 16S rRNA gene sequences indicated that strain YX-27T was clustered in the genus Paenibacillus but formed a separate clade. The genome size of YX-27T was 5.22 Mb with a G+C content of 57.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain YX-27T and 12 closely related type strains ranged from 70.8 to 74.8% and 19.8 to 23.0 %, respectively. The major cellular fatty acids were C16 : 0, anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids were one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phospholipid, four aminophospholipids and four unidentified lipids. The predominant respiratory quinone was MK-7. Based on phylogenetic, genomic, chemotaxonomic and phenotypic data, strain YX-27T was considered to represent a novel species for which the name Paenibacillus glufosinatiresistens sp. nov. is proposed, with YX-27T (=MCCC 1K08803T= KCTC 43611T) as the type strain.


Subject(s)
Aminobutyrates , Fatty Acids , Paenibacillus , Fatty Acids/chemistry , Sewage , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Phospholipids/chemistry
16.
Clin Exp Emerg Med ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286498

ABSTRACT

Following the 2011 ban on paraquat sales, South Korea has witnessed a significant reduction in the mortality rate associated with acute pesticide poisoning. Traditionally, paraquat and diquat, alongside several highly toxic organophosphates, carbamates, and organochlorine insecticides, have been recognized as culprits in causing fatalities among patients with acute pesticide poisoning. However, despite global efforts to curtail the use of these highly toxic pesticides, certain pesticides still exhibit a level of lethality surpassing their established clinical toxicity profiles. Understanding the clinical progression of these pesticides is paramount for physicians and toxicologists, as it holds the potential to enhance patient prognoses in cases of acute poisoning. This review aims to address the persistence of such highly lethal pesticides, which continue to pose a grave threat to victims of acute poisoning.

17.
Environ Toxicol ; 39(1): 148-155, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676913

ABSTRACT

Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.


Subject(s)
NF-E2-Related Factor 2 , Zebrafish , Animals , Zebrafish/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Liver , Inflammation/chemically induced , Inflammation/metabolism
18.
Forensic Toxicol ; 42(1): 1-6, 2024 01.
Article in English | MEDLINE | ID: mdl-37480483

ABSTRACT

PURPOSE: The analysis of water-soluble herbicides, including glyphosate (Glyp), glufosinate (Gluf), paraquat (PQ), and diquat (DQ), is time-consuming and expensive because they cannot be analyzed using general toxicological screening methods. Thus, this study aimed to develop a simple and rapid method to simultaneously analyze these compounds without any derivatization nor ion-pairing reagents. METHODS: The analytes were separated using hydrophilic interaction liquid chromatography and detected using tandem mass spectrometry. The developed method was applied to plant and biological samples assuming criminal damage and poisoning cases, respectively. RESULTS: All analytes were separated well and detected with good peak shapes. For plant samples, the herbicides were specifically detected from withered leaves using a simple extraction method. For biological samples, quantitative analysis was successfully validated, and the limit of quantification values of Glyp and Gluf were 0.2 µg/mL, and those of PQ and DQ were 1 ng/mL. CONCLUSION: The developed method had sufficient performance for practical forensic applications including poisoning cases and malicious uses to damage commercial crops.


Subject(s)
Aminobutyrates , Herbicides , Liquid Chromatography-Mass Spectrometry , Diquat , Paraquat , Glyphosate , Water
19.
Chemosphere ; 349: 140924, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086452

ABSTRACT

Herbicides glyphosate (N-(phosphonomethyl)glycine) and glufosinate (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) and the main transformation product of glyphosate, aminomethanephosphonic acid (AMPA), are challenging to analyze for in environmental samples. The quantitative method developed by this study adapts previously standardized dechlorination procedures coupled to a novel charged surface C18 column, ultra-high performance liquid chromatography-tandem mass spectrometry, polarity switching, and direct injection. The method was applied to chlorinated tap water, as well as river samples, collected in the City of Winnipeg and rural Manitoba, Canada. Using only syringe filtration without derivatization, the validated method resulted in good accuracies in both tap and surface water, at both 2 and 20 µg L-1. Method limits of detection (MLD) and quantification (MLQ) ranged from 0.022/0.074 to 0.11/0.36 µg L-1, with precisions of 0.46-2.2% (intraday) and 1.3-7.3% (interday). The mean (SEM) of the pesticides in µg L-1 for tap water were 0.11 (0.007) (AMPA), glufosinate and glyphosate < MLDs; and for Red River water were 0.56 (0.045) (AMPA), glufosinate < MLQ, and glyphosate 0.40 (0.072). For the smaller tributaries, glufosinate was >MLD but < MLQ once and that was for Shannon Creek at 0.2 µg L-1. For the remaining rivers, the mean concentrations ranged from 0.31 to 3.1 µg L-1 for AMPA, and 0.087-0.53 µg L-1 for glyphosate. The method will be ideal for supporting monitoring and risk assessment programs that require high throughput sampling and quantitative methods capable of producing robust results that leverages chromatographic and mass spectrometric paradigms instead of being extraction technology focused.


Subject(s)
Drinking Water , Herbicides , Glyphosate , Chromatography, High Pressure Liquid , Drinking Water/analysis , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analysis , Tandem Mass Spectrometry/methods , Herbicides/analysis
20.
Anal Bioanal Chem ; 416(3): 663-674, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36693955

ABSTRACT

Glufosinate is widely used to control various weeds. Glufosinate and its main metabolites have become the focus of attention because of their high water solubility and persistence in aquatic systems. Quantification of the agrochemical product and its metabolite residues is essential for the safety of agricultural products. In this study, a highly specific, simple method was developed to directly determine glufosinate and its metabolite residues in 21 plant origin foods by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and it was validated on 11 foods in five laboratories. Finally, the repeatability limit, reproducibility limit, and uncertainty of the method were calculated based on these validated data and used to support the more accurate detection results. Four different chromatographic columns were used to analyze three target compounds, and the anionic polar pesticide column showed the optimum separation and peak shape. Composition of the mobile phase, extraction solvent, and the clean-up procedure were optimized. The developed method was validated on 21 plant origin foods. The average recoveries were 74-115% for all matrices. The validation results of five laboratories showed this method had a good repeatability (RSDr < 9.5%) and reproducibility (RSDR < 18.9%). The method validation parameters met the requirements of guidance established by the European Union (EU) and China for pesticide residue analysis. This methodology can be used for a routine monitoring that performs well for glufosinate and its metabolite residues.


Subject(s)
Food , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL