Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 509
Filter
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854057

ABSTRACT

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.

2.
Acta Histochem ; 126(4): 152170, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936136

ABSTRACT

We previously reported the presence of P2X3 purinoceptors (P2X3)-expressing subserosal afferent nerve endings consisting of net- and basket-like nerve endings in the rat gastric antrum. These nerve endings may morphologically be vagal mechanoreceptors activated by antral peristalsis. The present study investigated immunoreactivities for vesicular glutamate transporter (VGLUT) 1 and VGLUT2 as well as exocytosis-related proteins, i.e., core components of the SNARE complex (SNAP25, Stx1, and VAMP2) and synaptotagmin-1 (Syt1), in whole-mount preparations of the rat gastric antrum using double immunofluorescence. VGLUT1 immunoreactivity was not detected, whereas VGLUT2 immunoreactivity was observed in P2X3-immunoreactive subserosal nerve endings composed of both net- and basket-like endings. In net-like nerve endings, intense VGLUT2 immunoreactivity was localized in polygonal bulges of reticular nerve fibers and peripheral axon terminals. Furthermore, intense immunoreactivities for SNAP25, Stx1, and VAMP2 were localized in net-like nerve endings. Intense immunoreactivities for VAMP2 and Syt1 were observed in VGLUT2-immunoreactive net-like nerve endings. In basket-like nerve endings, VGLUT2 immunoreactivity was localized in pleomorphic terminal structures and small bulges surrounding the subserosal ganglion, whereas immunoreactivities for SNAP25, Stx1, and VAMP2 were weak in these nerve endings. VGLUT2-immunoreactive basket-like nerve endings were weakly immunoreactive for VAMP2 and Syt1. These results suggest that subserosal afferent nerve endings release glutamate by exocytosis mainly from net-like nerve endings to modulate their mechanoreceptor function.

3.
Neuron ; 112(12): 1978-1996.e6, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38599212

ABSTRACT

Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/ß-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/ß-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/ß-catenin signaling.


Subject(s)
Blood-Retinal Barrier , Eye Proteins , Glutamic Acid , Nerve Tissue Proteins , Signal Transduction , beta Catenin , Animals , Blood-Retinal Barrier/metabolism , beta Catenin/metabolism , Mice , Glutamic Acid/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Signal Transduction/physiology , Vesicular Glutamate Transport Protein 1/metabolism , Neurons/metabolism , Mice, Knockout , Retinal Neovascularization/metabolism , Retina/metabolism , Mice, Inbred C57BL , Angiogenesis
4.
Toxicol In Vitro ; 98: 105815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636607

ABSTRACT

The action of calix[4]arenes C-424, C-425 and C-1193 has been investigated on suspended cholesterol/egg phosphatidylcholine lipid bilayer in a voltage-clamp mode. Comparative analysis with the membrane action by calix[4]arene-bis-α-hydroxymethylphosphonic acid (C-99) has shown that the substitution of bridge carbons for sulphur and addition of another methyl group to two alkyl tales in the lower rim of former dipropoxycalix[4]arene C-99 transformed mobile carrier that C-99 created in lipid bilayer (Shatursky et al., 2014) into a transmembrane pore as exposure of the bilayer membrane to sulphur-containing derivative dibutoxythiocalix[4]arene C-1193 resulted in microscopic transmembrane current patterns indicative of a channel-like mode of facilitated diffusion. Within all calix[4]arenes tested a net steady-state voltage-dependent transmembrane current was readily achieved only after addition of calix[4]-arene C-1193. In comparison with the membrane action of C-99 the current induced by calix[4]-arene C-1193 exhibited a much weakened anion selectivity passing slightly more current at positive potentials applied from the side of bilayer membrane to which the calix[4]-arene was added. Testing C-1193 for the membrane action against smooth muscle cells of rat uterus or swine myometrium and synaptosomes of rat brain nerve terminals revealed an increase in intracellular concentration of Ca2+ with reduction of the effective hydrodynamic diameter of the smooth muscle cells and enhanced basal extracellular level of neurotransmitters (glutamate and γ-aminobutyric acid) after C-1193-induced depolarization of the nerve terminals.


Subject(s)
Calixarenes , Lipid Bilayers , Synaptic Transmission , Animals , Calixarenes/chemistry , Calixarenes/pharmacology , Synaptic Transmission/drug effects , Lipid Bilayers/chemistry , Muscle Contraction/drug effects , Ion Channels/metabolism , Sulfur/chemistry , Rats , Female , Organophosphonates/chemistry , Male , Phenols/chemistry , Rats, Wistar
5.
Membranes (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38668105

ABSTRACT

In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.

6.
Horm Behav ; 162: 105548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636205

ABSTRACT

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Subject(s)
Anxiety , Congenital Hypothyroidism , Excitatory Amino Acid Transporter 2 , Hippocampus , Rats, Wistar , Animals , Male , Hippocampus/metabolism , Anxiety/metabolism , Anxiety/etiology , Rats , Female , Congenital Hypothyroidism/metabolism , Pregnancy , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Thyroid Hormones/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 3/metabolism , Excitatory Amino Acid Transporter 3/genetics , Behavior, Animal/physiology , Propylthiouracil , Amino Acid Transport System X-AG/metabolism , Amino Acid Transport System X-AG/genetics , Prenatal Exposure Delayed Effects/metabolism
7.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38451201

ABSTRACT

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Subject(s)
Auditory Cortex , Tinnitus , Rats , Animals , Auditory Cortex/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Neuroprotection , Tinnitus/drug therapy , Tinnitus/metabolism , Glutamic Acid/metabolism , Disease Models, Animal , Amino Acid Transport System X-AG/metabolism , Excitatory Amino Acid Transporter 2/metabolism
8.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383421

ABSTRACT

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Subject(s)
Neurotoxicity Syndromes , Parkinson Disease , Humans , Parkinson Disease/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cues , Inflammation/metabolism , Dopaminergic Neurons/pathology , Neurotoxicity Syndromes/metabolism , Glutamates/metabolism , Iron/metabolism
9.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G279-G290, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38193160

ABSTRACT

The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (∼2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission.NEW & NOTEWORTHY We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. Through anatomic, molecular, and functional analyses, we demonstrated that VGLUT2-ENs are activated indirectly by noxious circumferential colorectal stretch via nicotinic cholinergic transmission, suggesting their participation in mechanical visceral nociception.


Subject(s)
Colorectal Neoplasms , Motor Neurons , Mice , Animals , Immunohistochemistry , Neurotransmitter Agents/metabolism , Cholinergic Agents , Colorectal Neoplasms/metabolism , Myenteric Plexus/metabolism
10.
Neuroscience ; 539: 86-102, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-37993086

ABSTRACT

The vast majority of stroke cases are classified as ischemic stroke, but effective pharmacotherapy strategies to treat brain infarction are still limited. Glutamate, which is a primary mediator of excitotoxicity, contributes to neuronal damage in numerous pathologies, including ischemia. The aim of this study was to investigate the effect of the hydrogen sulfide donor AP39 on excitotoxicity. AP39 was administered as a single dose of 100 nmol/kg b.w. i.v. 10 min after the restoration of blood flow and 100 min after middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. Neurological deficits by Phillips's score, and infarct volume by TTC staining were evaluated (n = 8). LC-MS was used to determine the extracellular glutamate concentration in microdialysates collected intrasurgically and from freely moving animals 24 h and 3 days after reperfusion (n = 6). The expression of proteins involved in the regulation of glutamatergic transmission was investigated 24 h after reperfusion by Western-blot analysis (n = 6). The results were verified by double-immunostaining of brain cryosections (n = 6). The results showed a significant longitudinal decrease in extracellular glutamate concentrations in the motor cortex and hippocampus in MCAO + AP39 rats compared to MCAO rats. Moreover, the administration of AP39 increased the content of the GLT-1 transporter and reduced the content of VGLUT1 in the ischemic core. Upregulation of the GLT-1 transporter responsible for glutamate reuptake from the synaptic cleft, and downregulation of VGLUT1, which regulates glutamate transport to synaptic vesicles, indicate that these are important mechanisms by which AP39 reduces extracellular glutamate concentrations and, consequently, excitotoxicity after ischemia.


Subject(s)
Brain Ischemia , Hydrogen Sulfide , Rats , Male , Animals , Glutamic Acid/metabolism , Hydrogen Sulfide/pharmacology , Rats, Sprague-Dawley , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy
11.
Biomed Pharmacother ; 170: 116102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159376

ABSTRACT

Brain ischemia is one of the leading causes of death and long-term disability worldwide. Cessation of the blood supply to the brain directly stimulates many pathological events, including glutamate overload and neuroinflammation. Glial cell activation occurs shortly after ischemia onset, resulting in the release of proinflammatory cytokines and exacerbation of the detrimental effects of neuroinflammation. Proinflammatory signals influence the infiltration of a wide range of immune cells, including neutrophils, T cells and monocytes/macrophages. In this study, we aimed to verify the potential anti-inflammatory effect of Chicago Sky Blue 6B (CSB6B) in a rat model of focal cerebral ischemia (90-minute middle cerebral artery occlusion). CSB6B was administered 2 h before (pretreatment) or 1.5 h after reperfusion onset (posttreatment). A model of ischemic preconditioning was used as the comparator to pretreatment with CSB6B. The results of indicated that posttreatment with CSB6B had profound anti-inflammatory effects that were associated with reduced neurological deficits and a decreased infarct volume. At 24 h, 3 days and 7 days after brain ischemia, CSB6B administration reduced the protein levels of proinflammatory cytokines, such as Il1ß, Il6, Il18 and TNFα, in the cerebral cortex and the dorsal striatum. Treatment with CSB6B also limited the scope of microglia and astrocyte activation and the infiltration of immune cells. Taken together, this study shows that compounds such as CSB6B might be promising pharmacological tools; however, further studies on the improvements in the drug-like properties of these compounds must be undertaken.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Rats , Animals , Neuroinflammatory Diseases , Brain Ischemia/pathology , Cytokines/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal
12.
Front Mol Biosci ; 10: 1286673, 2023.
Article in English | MEDLINE | ID: mdl-38074092

ABSTRACT

Glutamate is an essential excitatory neurotransmitter and an intermediate for energy metabolism. Depending on the tumor site, cancer cells have increased or decreased expression of excitatory amino acid transporter 1 or 2 (EAAT1/2, SLC1A3/2) to regulate glutamate uptake for the benefit of tumor growth. Thus, EAAT1/2 may be an attractive target for therapeutic intervention in oncology. Genetic variation of EAAT1 has been associated with rare cases of episodic ataxia, but the occurrence and functional contribution of EAAT1 mutants in other diseases, such as cancer, is poorly understood. Here, 105 unique somatic EAAT1 mutations were identified in cancer patients from the Genomic Data Commons dataset. Using EAAT1 crystal structures and in silico studies, eight mutations were selected based on their close proximity to the orthosteric or allosteric ligand binding sites and the predicted change in ligand binding affinity. In vitro functional assessment in a live-cell, impedance-based phenotypic assay demonstrated that these mutants differentially affect L-glutamate and L-aspartate transport, as well as the inhibitory potency of an orthosteric (TFB-TBOA) and allosteric (UCPH-101) inhibitor. Moreover, two episodic ataxia-related mutants displayed functional responses that were in line with literature, which confirmed the validity of our assay. Of note, ataxia-related mutant M128R displayed inhibitor-induced functional responses never described before. Finally, molecular dynamics (MD) simulations were performed to gain mechanistic insights into the observed functional effects. Taken together, the results in this work demonstrate 1) the suitability of the label-free phenotypic method to assess functional variation of EAAT1 mutants and 2) the opportunity and challenges of using in silico techniques to rationalize the in vitro phenotype of disease-relevant mutants.

13.
Mol Hum Reprod ; 30(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38113413

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death process characterized by the accumulation of lethal oxidative damage. Localized iron overload is a unique clinical phenomenon in ovarian endometriosis (EM). However, the role and mechanism of ferroptosis in the course of ovarian EM remain unclear. Traditionally, autophagy promotes cell survival. However, a growing body of research suggests that autophagy promotes ferroptosis under certain conditions. This study aimed to clarify the status of ferroptosis in ovarian EM and explore the mechanism(s) by which iron overload causes ferroptosis and ectopic endometrial resistance to ferroptosis in human. The results showed increased levels of iron and reactive oxygen species in ectopic endometrial stromal cells (ESCs). Some ferroptosis and autophagy proteins in the ectopic tissues differed from those in the eutopic endometrium. In vitro, iron overload caused decreased cellular activity, increased lipid peroxidation levels, and mitochondrial morphological changes, whereas ferroptosis inhibitors alleviated these phenomena, illustrating activated ferroptosis. Iron overload increased autophagy, and ferroptosis caused by iron overload was inhibited by autophagy inhibitors, indicating that ferroptosis caused by iron overload was autophagy-dependent. We also confirmed the effect of iron overload and autophagy on lesion growth in vivo by constructing a mouse EM model; the results were consistent with those of the in vitro experiments of human tissue and endometrial stomal cells. However, ectopic lesions in patients can resist ferroptosis caused by iron overload, which can promote cystine/glutamate transporter hyperexpression by highly expressing activating transcription factor 4 (ATF4). In summary, local iron overload in ovarian EM can activate autophagy-related ferroptosis in ESCs, and ectopic lesions grow in a high-iron environment via ATF4-xCT while resisting ferroptosis. The effects of iron overload on other cells in the EM environment require further study. This study deepens our understanding of the role of ferroptosis in ovarian EM.


Subject(s)
Endometriosis , Ferroptosis , Iron Overload , Female , Animals , Mice , Humans , Activating Transcription Factor 4/metabolism , Endometriosis/metabolism , Ferroptosis/genetics , Iron Overload/complications , Iron Overload/metabolism , Iron Overload/pathology , Iron/metabolism , Autophagy/genetics , Stromal Cells/metabolism
14.
ACS Chem Neurosci ; 14(23): 4252-4263, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37994790

ABSTRACT

Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.


Subject(s)
Glutamic Acid , Prodrugs , Animals , Humans , Glutamic Acid/metabolism , Prodrugs/pharmacology , Biological Transport , Amino Acid Transport System X-AG/metabolism , Esters , Mammals/metabolism
15.
Front Immunol ; 14: 1213710, 2023.
Article in English | MEDLINE | ID: mdl-37954604

ABSTRACT

Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.


Subject(s)
Electroacupuncture , Neuralgia , Neuroprotective Agents , Mice , Animals , Astrocytes/metabolism , Neuroprotective Agents/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein , Electroacupuncture/methods , Dental Pulp/metabolism , Neuralgia/metabolism , Analgesics/metabolism , Interneurons/metabolism
16.
J Vet Med Sci ; 85(11): 1237-1244, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37866885

ABSTRACT

Cystine-glutamate transporter (xCT) is a plasma membrane transporter that imports cystine and indirectly contributes to the oxidative stress resistance associated with increased intracellular glutathione levels. Canine adipose-derived stem cells (CADSCs) include an xCT-positive subpopulation and show relatively low expression of osteogenic markers during in vitro osteogenic differentiation. Sulfasalazine (SSZ), a drug used to treat rheumatoid arthritis, suppresses xCT expression in cancer cells. In this study, we found that the SSZ treatment at 100 µM significantly suppressed xCT mRNA expression in CADSCs but did not significantly affect cell proliferation under the same conditions. Additionally, this treatment decreased the intracellular glutathione concentration. During in vitro osteogenic differentiation, the SSZ treatment at 50 µM and 100 µM significantly increased alizarin red staining and its quantification, as well as the concentration-dependent osteogenic differentiation markers (BMP1 and SPP) mRNA expression. Our results suggested that SSZ enhances the osteogenic differentiation potential of CADSCs and can potentially exhibit a superior therapeutic profile in canine bone regenerative medicine.


Subject(s)
Osteogenesis , Sulfasalazine , Animals , Dogs , Sulfasalazine/pharmacology , Cystine , Cell Differentiation , Glutathione , Amino Acid Transport System X-AG , Stem Cells , RNA, Messenger
17.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3273-3289, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37622360

ABSTRACT

L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.


Subject(s)
Corynebacterium glutamicum , Glutamic Acid , Corynebacterium glutamicum/genetics , Ketoglutaric Acids , Metabolic Engineering , Alanine
18.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628787

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived neural cells have started to be used in safety/toxicity tests at the preclinical stage of drug development. As previously reported, hiPSC-derived neurons exhibit greater tolerance to excitotoxicity than those of primary cultures of rodent neurons; however, the underlying mechanisms remain unknown. We here investigated the functions of L-glutamate (L-Glu) transporters, the most important machinery to maintain low extracellular L-Glu concentrations, in hiPSC-derived neural cells. We also clarified the contribution of respective L-Glu transporter subtypes. At 63 days in vitro (DIV), we detected neuronal circuit functions in hiPSC-derived neural cells by a microelectrode array system (MEA). At 63 DIV, exposure to 100 µM L-Glu for 24 h did not affect the viability of neural cells. 100 µM L-Glu in the medium decreased to almost 0 µM in 60 min. Pharmacological inhibition of excitatory amino acid transporter 1 (EAAT1) and EAAT2 suppressed almost 100% of L-Glu decrease. In the presence of this inhibitor, 100 µM L-Glu dramatically decreased cell viability. These results suggest that in hiPSC-derived neural cells, EAAT1 and EAAT2 are the predominant L-Glu transporters, and their uptake potentials are the reasons for the tolerance of hiPSC-derived neurons to excitotoxicity.


Subject(s)
Glutamic Acid , Induced Pluripotent Stem Cells , Humans , Glutamic Acid/toxicity , Neurons , Amino Acid Transport System X-AG , Biological Transport , Excitatory Amino Acid Transporter 1
19.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Article in English | MEDLINE | ID: mdl-37527694

ABSTRACT

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Subject(s)
Mucuna , Parkinson Disease , Plant Extracts , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Glutamic Acid/metabolism , Biomarkers/metabolism , Motor Cortex/drug effects , Motor Cortex/metabolism , Motor Cortex/pathology , Mucuna/chemistry , Plant Extracts/administration & dosage , Gait/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Animals , Mice
20.
Glia ; 71(12): 2770-2781, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37564028

ABSTRACT

Astrocytes are intricately involved in the activity of neural circuits; however, their basic physiology of interacting with nearby neurons is not well established. Using two-photon imaging of neurons and astrocytes during higher frequency stimulation of hippocampal CA3-CA1 Schaffer collateral (Scc) excitatory synapses, we could show that increasing levels of released glutamate accelerated local astrocytic Ca2+ elevation. However, blockage of glutamate transporters did not abolish this astrocytic Ca2+ response, suggesting that astrocytic Ca2+ elevation is indirectly associated with an uptake of extracellular glutamate. However, during the astrocytic glutamate uptake, the Na+ /Ca2+ exchanger (NCX) reverse mode was activated, and mediated extracellular Ca2+ entry, thereby triggering the internal release of Ca2+ . In addition, extracellular Ca2+ entry via membrane P2X receptors further facilitated astrocytic Ca2+ elevation via ATP binding. These findings suggest a novel mechanism of activity induced Ca2+ permeability increases of astrocytic membranes, which drives astrocytic responses during neuronal stimulation of CA3-CA1 Scc excitatory synapses.


Subject(s)
Astrocytes , Neurons , Astrocytes/metabolism , Neurons/metabolism , Hippocampus/metabolism , Synapses/metabolism , Glutamic Acid/metabolism , Permeability , Calcium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...