Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.635
Filter
1.
Front Plant Sci ; 15: 1413653, 2024.
Article in English | MEDLINE | ID: mdl-38952846

ABSTRACT

Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.

2.
Poult Sci ; 103(8): 103943, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38964271

ABSTRACT

The purpose of this research was to see how different levels of Se-chitosan, a novel organic source of Se, affected the production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant status, and yolk fatty acid profile of laying Japanese quail. This experiment used a totally randomized design, with 5 treatments, 6 repeats, and 10 birds in each repetition. The dietary treatment groups were as follows: no Se supplementation (control group), 0.2 mg/kg Na-selenite supplementation, and 0.2, 0.4, and 0.6 mg/kg Se-chitosan supplementation. The feed conversion ratio (FCR) improved linearly in quails fed different levels of Se-chitosan compared to the control group (P < 0.05). Furthermore, Se-chitosan at concentrations of 0.2 and 0.4 mg/kg demonstrated both linear and quadratic increases in albumen height, Haugh unit, and yolk color in fresh eggs compared to the control group. Additionally, Se-chitosan contributed to enhanced shell thickness and strength, along with an increased Se concentration in the yolk. Se-chitosan supplementation at different levels linearly and quadratically reduced coliforms (COL) while increasing lactic acid bacteria (LAB)/coliform ratios (P < 0.05). Se-chitosan supplementation linearly and quadratically increased the total antibody response to sheep red blood cells (SRBC) and IgG titers (P < 0.05). It also linearly decreased the level of malondialdehyde in fresh and stored egg yolks and increased the activity of antioxidant enzymes catalase and glutathione peroxidase linearly, and superoxide dismutase (SOD) both linearly and quadratically in quail blood serum (P < 0.05). Additionally, supplementation of Se-chitosan at levels of 0.2 and 0.6 mg/kg linearly decreased the ∑ n-6 PUFA/∑ n-3 PUFA ratio in the yolk compared to the control group (P < 0.05). It can be concluded that incorporating Se-chitosan as a novel organic source of Se in the diet of laying quails can enhance production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzyme activity, and yolk fatty acid profile.

3.
Food Chem ; 458: 140285, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970956

ABSTRACT

Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.

4.
Plant Physiol Biochem ; 214: 108878, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38968841

ABSTRACT

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.

5.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969429

ABSTRACT

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Subject(s)
Biotin , Glutathione , Photoacoustic Techniques , Photochemotherapy , Glutathione/chemistry , Glutathione/metabolism , Animals , Humans , Mice , Biotin/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Optical Imaging , Female , Photothermal Therapy , Mice, Nude , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/therapeutic use
6.
J Mol Neurosci ; 74(3): 62, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958788

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aß) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Ferroptosis , Lipid Metabolism , Humans , Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Animals , Iron/metabolism
7.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961329

ABSTRACT

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Subject(s)
Fruit , Gene Expression Profiling , Metabolomics , Plant Leaves , Prunus persica , Plant Leaves/metabolism , Plant Leaves/genetics , Prunus persica/genetics , Prunus persica/metabolism , Prunus persica/growth & development , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Flavonoids/metabolism , Indoleacetic Acids/metabolism
8.
Cell Biochem Biophys ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961034

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.

9.
Korean J Pain ; 37(3): 233-246, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946696

ABSTRACT

Background: Ferrostatin-1 and liproxstatin-1, both ferroptosis inhibitors, protect cells. Liproxstatin-1 decreases morphine tolerance. Yet, ferrostatin-1's effect on morphine tolerance remains unexplored. This study aimed to evaluate the influence of ferrostatin-1 on the advancement of morphine tolerance and understand the underlying mechanisms in male rats. Methods: This experiment involved 36 adult male Wistar albino rats with an average weight ranging from 220 to 260 g. These rats were categorized into six groups: Control, single dose ferrostatin-1, single dose morphine, single dose ferrostatin-1 + morphine, morphine tolerance (twice daily for five days), and ferrostatin-1 + morphine tolerance (twice daily for five days). The antinociceptive action was evaluated using both the hot plate and tail-flick tests. After completing the analgesic tests, tissue samples were gathered from the dorsal root ganglia (DRG) for subsequent analysis. The levels of glutathione, glutathione peroxidase 4 (GPX4), and nuclear factor erythroid 2-related factor 2 (Nrf2), along with the measurements of total oxidant status (TOS) and total antioxidant status (TAS), were assessed in the tissues of the DRG. Results: After tolerance development, the administration of ferrostatin-1 resulted in a significant decrease in morphine tolerance (P < 0.001). Additionally, ferrostatin-1 treatment led to elevated levels of glutathione, GPX4, Nrf2, and TOS (P < 0.001), while simultaneously causing a decrease in TAS levels (P < 0.001). Conclusions: The study found that ferrostatin-1 can reduce morphine tolerance by suppressing ferroptosis and reducing oxidative stress in DRG neurons, suggesting it as a potential therapy for preventing morphine tolerance.

10.
Environ Toxicol Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988284

ABSTRACT

Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

11.
BMC Cancer ; 24(1): 816, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977966

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is a rare but highly aggressive thyroid cancer with poor prognosis. Killing cancer cells by inducing DNA damage or blockage of DNA repair is a promising strategy for chemotherapy. It is reported that aldehyde-reactive alkoxyamines can capture the AP sites, one of the most common DNA lesions, and inhibit apurinic/apyrimidinic endonuclease 1(APE1)-mediated base excision repair (BER), leading to cell death. Whether this strategy can be employed for ATC treatment is rarely investigated. The aim of this study is to exploit GSH-responsive AP site capture reagent (AP probe-net), which responses to the elevated glutathione (GSH) levels in the tumor micro-environment (TME), releasing reactive alkoxyamine to trap AP sites and block the APE1-mediated BER for targeted anti-tumor activity against ATC. In vitro experiments, including MTT andγ-H2AX assays, demonstrate their selective cytotoxicity towards ATC cells over normal thyroid cells. Flow cytometry analysis suggests that AP probe-net arrests the cell cycle in the G2/M phase and induces apoptosis. Western blotting (WB) results show that the expression of apoptotic protein increased with the increased concentration of AP probe-net. Further in vivo experiments reveal that the AP probe-net has a good therapeutic effect on subcutaneous tumors of the ATC cells. In conclusion, taking advantage of the elevated GSH in TME, our study affords a new strategy for targeted chemotherapy of ATC with high selectivity and reduced adverse effects.


Subject(s)
Apoptosis , Glutathione , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Humans , Glutathione/metabolism , Animals , Mice , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Xenograft Model Antitumor Assays , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Damage/drug effects , Cell Proliferation/drug effects , Tumor Microenvironment/drug effects
12.
World J Gastrointest Surg ; 16(6): 1742-1748, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983347

ABSTRACT

BACKGROUND: Infant hepatitis syndrome (IHS) is a clinical syndrome in infants less than one year of age with generalized skin jaundice, abnormal liver function, and hepatomegaly due to various etiologies such as infection. AIM: To investigate the effect of IHS patients, after treatment with arsphenamine-based peptides, on patients' liver function damage and immune function. METHODS: Of 110 patients with IHS treated in our hospital from January 2019 to January 2021 were grouped according to the randomized residual grouping method, with 5 cases in each group shed due to transfer, etc. Ultimately, 50 cases remained in each group. The control group was treated with reduced glutathione, and the treatment group was treated with sesquiterpene peptide based on the control group. Observe and compare the differences in indicators after treatment. RESULTS: The comparison of serum total bilirubin, direct bilirubin, and serum alanine transferase after treatment was significantly different and lower in the treatment group than in the control group (P < 0.05). The comparison of CD4+, CD3+, CD4+/CD8+ after treatment was significantly different and higher in the treatment group than in the control group, and the comparison was statistically significant (P < 0.05). The complication of the two groups showed that the rash, cough and sputum, elevated platelets, and gastrointestinal reactions in the treatment group were significantly lower than those in the control group, and the differences were statistically significant by test (P < 0.05). CONCLUSION: The comparative study of IHS treated with arsphenamine combined with reduced glutathione is more effective.

13.
Heliyon ; 10(12): e33258, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022000

ABSTRACT

Objective: Acute liver and kidney injury is the most common complication after aortic surgery, which seriously affects the survival and safety of perioperative patients. The presence of chronic preoperative liver and renal insufficiency, presence of preoperative blood inflammation indicators, duration of intraoperative extracorporeal circulation, and volume of red blood cell transfusion are the main influencing factors for acute postoperative liver and kidney injuries. In recent years, with the research progress on oxidative stress, a growing body of evidence has demonstrated that oxidative stress may cause tissue damage after ischemia-reperfusion (IR). However, the impact of the oxidative stress of distal tissues caused by IR on liver and renal cells after arterial surgeries has not yet been elucidated. Methods: New Zealand white rabbits were used for the experiments and were divided into three groups. Among them, two groups were fed high-fat feed to establish a white rabbit model of hypertriglyceridemia, whereas the control group was provided with ordinary feed. In the experiment, white rabbits were subjected to occlusion of the infrarenal aorta abdominalis to simulate IR of the lower limbs. The effects of high triglyceride levels after the arterial IR of the lower limbs were investigated using the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), a fat metabolite, in ischemic muscle tissues and blood tissues. One of the groups receiving high-fat feed received intervention with reduced glutathione (GSH) before IR of the lower limbs. Pathological studies were performed to identify the expression levels of inflammatory factors and inflammatory cells in liver and renal cells as well as cell apoptosis. The effects of GSH administration before IR on reducing the oxidative stress in adipose tissues and alleviating liver and kidney damage after stress response were investigated. Results: After IR, the increases in ROS and MDA in ischemic muscle tissues and blood tissues were higher in white rabbits with high triglyceride levels than in those that only received ordinary feed or received intervention with GSH. In addition, for white rabbits with high triglyceride levels, the TNF-α expression levels in the liver increased after IR. Moreover, a considerable increase in the expression of TNF-α, IL-6, macrophages, and T lymphocytes were observed in renal cells. A large number of inflammatory cells and the formation of immune complexes were also noted in the glomeruli; in addition, cell apoptosis was promoted. Conclusion: This study showed that high triglyceride levels enhanced the oxidative stress response and increased ROS production in New Zealand white rabbits after arterial IR of the lower limbs. High ROS levels activated the expression of inflammatory factors and inflammatory cells in the liver and kidney, which affected cell functions and promoted apoptosis. At high triglyceride levels, GSH downregulated ROS production in oxidative stress after IR, thereby protecting liver and kidney functions.

14.
Front Physiol ; 15: 1290234, 2024.
Article in English | MEDLINE | ID: mdl-39022306

ABSTRACT

In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.

15.
J Exp Bot ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028261

ABSTRACT

Salicylic acid (SA) is a central phytohormone that orchestrates genetic and physiological responses involving defense mechanisms against pathogens. This review presents cutting-edge research on emerging molecular players identified within the past five years contributing to SA accumulation. Furthermore, we delve into two relatively underexplored domains: the dynamic production of SA throughout the plant life cycle, with a specific focus on senescence, and the intricate interplay between SA, nutrition, and its multifaceted implications on plant development and defense response. This synthesis aims to provide a contemporary and comprehensive understanding of the diverse roles of SA in plant biology.

16.
Gene ; 928: 148746, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004322

ABSTRACT

Gestational Diabetes Mellitus (GDM) is a medical complication during the gestational period in which woman who had never been diagnosed with diabetes develops hyperglycemia. Prior studies have demonstrated that the advancement of GDM and its consequences arises from a disparity between oxidants and antioxidants in the cells. The observed outcomes can be attributed to an excessive formation of reactive oxygen species (ROS) within the cells, coupled with a reduced activity of anti-oxidative enzymes. Glutathione S-transferase (GSTs) is recognized as an antioxidant enzyme that is belong to as a phase II family member of detoxifying enzymes. These metabolic multigene catalysts are found into the cytoplasm of the cell. GSTs play a vital part in the elimination of cellular ROS or free radicals. The study involves total 300 pregnant women, (150 GDM cases and 150 healthy controls). The polymorphism study of GSTs genes (GSTM1 and GSTT1) was determined by conventional Polymerase Chain Reaction (PCR). The mRNA expression study of GSTM1 and GSTT1 genes analysed by qPCR/ RT-PCR (quantitative PCR/Real-Time PCR) followed by statistical analysis done using Prism8 software (version 8.01). The study revealed statistically significant variations in biochemical parameters between GDM cases and controls. It was found GSTM1-null (GSTM1-/-) polymorphism significantly (P < 0.0001) most prevalent in GDM cases (56.7%) when compared to healthy control (28%). However, no significant difference was observed for GSTT1 null and present polymorphism (P = 0.906). The gene expression levels of both GSTM1 and GSTT1 were found considerably downregulated in individuals with GDM as compared to the control group (P < 0.0001). The downregulation of gene expression has a significant (P<0.0001) association with the null/deletion polymorphism of both GSTM1/ GSTT1 genes respectively. Null/deletion genotype of GSTM1 gene and its expression showed significant association with GDM. Therefore, this gene variant has the potential to be used as a prognostic biomarker for GDM. However, there is need to study this gene variant in larger sample size and different ethnicity.

17.
Talanta ; 278: 126541, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018760

ABSTRACT

A polyethyleneimine capped silver nanoclusters (PEI-AgNCs) based turn-off-on fluorescence sensor has been developed to determine glutathione (GSH) effectively. The fluorescence intensity of silver nanoclusters (AgNCs) has been quenched by Cu(II) and recovered by adding GSH. The quenching of fluorescence intensity of PEI-AgNCs by Cu(II) and recovery of the emission intensity of PEI-AgNCs after the addition of GSH is supposed to be ground state adduct formation. Due to the greater affinity of Cu(II) towards GSH compared to that to PEI-AgNCs, the defragmentation of PEI-AgNCs-Cu(II) adduct occurs after the addition of GSH to the solution, resulting in the recovery of emission intensity of PEI-AgNCs. Characterisation studies of the probe have been done using FT-IR spectroscopy, XPS analysis, XRD analysis, UV-visible and Fluorescence spectrophotometry, EDX spectroscopy and TEM analysis. Different experimental parameters were optimised. Under optimised analytical conditions, the sensor showed a wide linear range for the quantification of GSH from 1.00 × 10-4 M to 3.00 × 10-6 M with a detection limit (LOD) of 8.00 × 10-7 M. Selectivity and interference studies were done in the presence of different structurally similar and coexisting species of GSH in blood. The practical utility of the proposed sensor has been validated in artificial blood serum.

18.
Technol Health Care ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39031395

ABSTRACT

BACKGROUND: Low-grade gliomas (LGG) are a variety of brain tumors that show different clinical outcomes. The methylation of the GSTM5 gene has been noted in the development of LGG, however, its prognostic importance remains uncertain. OBJECTIVE: The objective of this study was to examine the correlation between GSTM5 DNA methylation and clinical outcomes in individuals diagnosed with LGG. METHODS: Analysis of GSTM5 methylation levels in LGG samples was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The overall survival based on GSTM5 methylation status was evaluated using Kaplan-Meier curves. The DNA methylation heatmap for particular CpG sites in the GSTM5 gene was visualized using the "pheatmap" R package. RESULTS: The study analyzed that LGG tumors had higher levels of GSTM5 methylation than normal tissues. There was an inverse relationship discovered between GSTM5 expression and methylation. LGG patients with hypermethylation of GSTM5 promoter experienced a positive outcome. Age, grade, and GSTM5 methylation were determined as independent prognostic factors in LGG through both univariate and multivariate Cox regression analyses. CONCLUSION: Methylation of GSTM5 DNA, specifically at certain CpG sites, is linked to a positive outlook in patients with LGG. Utilizing the "pheatmap" R package to visualize GSTM5 methylation patterns offers important information for identifying prognostic markers and therapeutic targets in low-grade gliomas.

19.
J Sep Sci ; 47(12): e2400247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031562

ABSTRACT

Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.


Subject(s)
Glutathione , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Glutathione/analysis , Chromatography, High Pressure Liquid/methods , Humans , Homocysteine/analysis , Cysteine/analysis , Pyrrolidonecarboxylic Acid/analysis , Pyrrolidonecarboxylic Acid/chemistry , Pyrrolidonecarboxylic Acid/metabolism , Dipeptides/analysis , Acetylcysteine/analysis , Acetylcysteine/chemistry , Cystine/analysis
20.
J Basic Microbiol ; : e2400081, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031701

ABSTRACT

RNA interference (RNAi) has not been tested in the pandemic amphibian pathogen, Batrachochytrium dendrobatidis, but developing this technology could be useful to elucidate virulence mechanisms, identify therapeutic targets, and may present a novel antifungal treatment option for chytridiomycosis. To manipulate and decipher gene function, rationally designed small interfering RNA (siRNA) can initiate the destruction of homologous messenger RNA (mRNA), resulting in the "knockdown" of target gene expression. Here, we investigate whether siRNA can be used to manipulate gene expression in B. dendrobatidis via RNAi using differing siRNA strategies to target genes involved in glutathione and ornithine synthesis. To determine the extent and duration of mRNA knockdown, target mRNA levels were monitored for 24-48 h after delivery of siRNA targeting glutamate-cysteine ligase, with a maximum of ~56% reduction in target transcripts occurring at 36 h. A second siRNA design targeting glutamate-cysteine ligase also resulted in ~53% knockdown at this time point. siRNA directed toward a different gene target, ornithine decarboxylase, achieved 17% reduction in target transcripts. Although no phenotypic effects were observed, these results suggest that RNAi is possible in B. dendrobatidis, and that gene expression can be manipulated in this pathogen. We outline ideas for further optimization steps to increase knockdown efficiency to better harness RNAi techniques for control of B. dendrobatidis.

SELECTION OF CITATIONS
SEARCH DETAIL
...