Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.707
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124951, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39163770

ABSTRACT

Glycerol is an important biological molecule, but no facile and on-site fluorescence sensor for detecting glycerol has been reported up to now. In this work, the organic fluorescent sensor for glycerol was prepared based on hydrazine-bridged bis-tetraphenylimidazole (HBT), which exhibited an excellent "turn-on" blue fluorescence response in detecting glycerol for the first time. The good sensing selectivity for glycerol among all kinds of organic molecules and ions was confirmed with the low detection limitation (LOD=0.48 µM). The sensing mechanism was proposed as that the photo-induced electron transfer process between the lone pair electrons of the Schiff group and the tetraphenylimidazole moiety was interrupted by the multiple hydrogen-bond action between glycerol and HBT. The sensing ability of HBT for glycerol was successfully used for the detection of glycerol in test paper and real samples (glycerine enema and aloe vera gel), demonstrating the good potential for simple, rapid and in-situ detection of glycerol in daily life.

2.
Int J Biol Macromol ; 280(Pt 2): 135827, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306177

ABSTRACT

Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.

3.
Biochimie ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299535

ABSTRACT

Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.

4.
Microbiome ; 12(1): 178, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300575

ABSTRACT

BACKGROUND: Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS: Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION: Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.


Subject(s)
Feces , Fermentation , Gastrointestinal Microbiome , Glycerol , Metagenomics , Animals , Feces/microbiology , Glycerol/metabolism , Metagenomics/methods , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Propylene Glycols/metabolism , Vitamin B 12/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/enzymology , Phylogeny , Animals, Wild/microbiology
5.
Article in English | MEDLINE | ID: mdl-39305412

ABSTRACT

In recent years, there has been extensive research within the scientific community on deep eutectic systems due to their remarkable versatility in solubilizing diverse substances and serving as effective solvents in catalytic processes. While initially regarded as non-toxic, a comprehensive toxicological assessment is essential to comprehend their behavior within organisms. In this study, seven distinct systems, composed of N,N,N-triethyl-N-(2,3-dihydroxypropyl)ammonium chloride (N00Cl) and glycerol-derived ethers with alkyl chains of varying lengths (100, 200, 3F00, 300, 3i00, and 400), in a 1:2 molar ratio were investigated for their aquatic toxicity in shrimp (Palaemon varians). The assessment involved analyzing oxidative stress biomarkers such as glutathione S-transferase, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity (TAC), and lipoperoxidation (MDA content). Results show an odd-even effect for LC50 values being N00Cl-300, the system showing higher values. Regarding oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidant capacity in the organisms has been observed, suggesting significant toxicity to shrimps due to the changes in oxidative stress biomarkers at high concentrations. However, at 100 mg/l all systems can be considered environmentally safe, and no negative impacts are expected on aquatic ecosystems.

6.
Prep Biochem Biotechnol ; : 1-13, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267306

ABSTRACT

2,3-Butanediol (2,3-BD) is a highly valued building block, and optimizing its production by fermentation, particularly with crude glycerol, is crucial. Enterobacter aerogenes is a key microorganism for this process; however, there are limited studies addressing the inhibition effects of products and by-products on 2,3-BD production. This study investigates these inhibition effects to maximize 2,3-BD production. Final concentrations of 2,3-BD plus acetoin reached 89.3, 92.7, and 71.1 g.L-1 with productivities of 1.22, 1.69, and 0.99 g.L-1.h-1 in pure glycerol, glucose, and crude glycerol media, respectively. Acetic acid was the main by-product, with concentrations ranging from 10 to 15 g.L-1. The reinoculation of E. aerogenes cells highlighted the strong effect of 2,3-BD and acetic acid on microbial growth and metabolism, with the cultivation environment exerting selective pressure. Notably, cells reuse enhanced performance in crude glycerol media, achieving a specific productivity in relation to biomass (YP/X) of 9.18 g.g-1; about 25% higher than in fed-batch without cells reuse. By combining results from two fed-batch cycles, the total final concentration of 2,3-BD plus acetoin reached 99.4 g.L-1, alongside a 33% reduction in total acetic acid production with reused cells.

7.
ChemistryOpen ; : e202400094, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263751

ABSTRACT

Glycerol, a versatile and ubiquitous compound, plays a vital role in a plethora of metabolic pathways in both prokaryotes and eukarotyes. Relatively few glycerol analogues have previously been explored for their use as glycerol kinase inhibitors, in addition to their therapeutic potential, however their use as (pro)-drugs in the context of parasitic diseases such as trypanosomiasis is unreported. The literature on glycerol metabolism and particular its synergic anti-profilation behaviour with salicylhydroxamic acid (SHAM) in Trypanosoma brucei is extensive. However, utiliation of glycerol analogues has not been explored as possible superior combinatory compounds. This report describes the synthesis of various glycerol analogues and their subsequent biochemical pheotypic analysis for their effect on lipid metabolism and their possible synergic activity with SHAM on Trypanosoma brucei. The glycerol analogues caused morphological changes;, including detached flagella, cytokinesis defects and 'big-eye' phenotype. All four compounds either matched or marginally increased the toxicity of SHAM when used in combination against Trypanosoma brucei. However, the compounds exhibited mostly an antagonistic relationship with SHAM rather than synergistic. This research highlights the potential of small molecule glycerol analogues for their combination use with SHAM for the treatment of parasitic disease, such as trypanosomiasis.

8.
Int J Biol Macromol ; : 135855, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317277

ABSTRACT

To develop technology more applicable to industrial settings, this study aimed to produce agar-based bioplastic films using extrusion followed by hot compression. The research examined various amounts of glycerol incorporation as the plasticizer, which also facilitated the flowability of the extrusion process. These variations included agar-glycerol ratios of 75:25, 70:30, 65:35, 60:40, and 55:45 (% w/w). Moreover, the films underwent thorough testing to assess their physical, mechanical, chemical, water sensitivity, surface imaging, and biodegradability properties. The results showed that increasing the amount of glycerol in the agar film matrix generally made the films more sensitive to water, resulting in greater hydrophilicity. This change was primarily owing to the increased presence of hydroxyl groups. It also affected other characteristics, such as enhancing the film's stretchability and thermal stability. Furthermore, a decrease in film density was observed, leading to reduced tensile strength and barrier properties. Moreover, the higher glycerol content improved its surface wettability and the higher agar content accelerated the film's biodegradability rate. Microstructural examination using scanning electron microscopy and chemical analysis (FTIR) revealed a homogeneous mixture of agar and glycerol produced through the extrusion process. These findings demonstrate the potential of extrusion techniques for the large-scale production of agar-based bioplastics.

9.
Polymers (Basel) ; 16(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274054

ABSTRACT

The structure and physicochemical properties of polyvinyl alcohol (PVA) and PVA/glycerol films have been investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and advanced scanning probe microscopy (SPM). In the pure PVA films, SPM allowed us to observe ribbon-shaped domains with a different frictional and elastic contrast, which apparently originated from a correlated growth or assembly of PVA crystalline nuclei located within individual PVA clusters. The incorporation of 22% w/w glycerol led to modification in shape of those domains from ribbon-like in pure PVA to rounded in PVA/glycerol 22% w/w films; changes in the relative intensities of the XRD peaks and a decrease in the amorphous halo in the XRD pattern were also detected, while the DTA peak corresponding to the melting point remained at almost the same temperature. For higher glycerol content, FT-IR revealed additional glycerol-characteristic peaks presumably related to the formation of glycerol aggregates, and XRD, FT-IR, and DTA all indicated a reduction in crystallinity. For more than 36% w/w glycerol, the plasticization of the films complicated the acquisition of SPM images without tip-induced surface modification. Our study contributes to the understanding of crystallinity in PVA and how it is altered by a plasticizer such as glycerol.

10.
Small ; : e2403463, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324290

ABSTRACT

Liposomes are widely utilized in therapeutic nanosystems as promising drug carriers for cancer treatment, which requires a meticulous synthesis approach to control the nanoprecipitation process. Acoustofluidic platforms offer a favorable synthesis environment by providing robust agitation and rapid mixing. Here, a novel high-throughput acoustofluidic micromixer is presented for a solvent and solvent-free synthesis of ultra-small and size-tunable liposomes. The size-tunability is achieved by incorporating glycerol as a new technique into the synthesis reagents, serving as a size regulator. The proposed device utilizes the synergistic effects of vibrating trapped microbubbles and an oscillating thin elastic membrane to generate vigorous acoustic microstreaming. The working principle and mixing mechanism of the device are explored numerically and experimentally. The platform exhibits remarkable mixing efficacy for aqueous and viscous solutions at flow rates up to 8000 µL/h, which makes it unique for high-throughput liposome formation and preventing aggregation. As a proof of concept, this study investigates the impact of phospholipid type and concentration, flow rate, and glycerol on the size and size distribution of liposomes. The results reveal a significant size reduction, from ≈900 nm to 40 nm, achieved by merely introducing 75% glycerol into the synthesis reagents, highlighting an innovative approach toward size-tunable liposomes.

11.
J Biomed Mater Res A ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39295227

ABSTRACT

The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.

12.
J Sci Food Agric ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300042

ABSTRACT

BACKGROUND: Glycerol is a well-known plasticizer for starch-based materials, but it easily migrates during starch retrogradation, thereby deteriorating the films' properties. We hypothesized that the performance of high-content starch/poly(butylene adipate-co-terephthalate) (PBAT) films could be enhanced by using sugar/sugar alcohol (glucose, sucrose and sorbitol) as natural, green and edible co-plasticizers with glycerol. RESULTS: The employment of co-plasticizers reduced the melt fluidity of the blends, established intermolecular hydrogen bonds with starch and resulted in a brittle film structure. The presence of sucrose contributed to the formation of more B-type starch crystals. Glucose and sucrose promoted the conversion of bound water to entrapped water, while sorbitol contributed to more bound water. The co-plasticizers enhanced films' thermal stability, moisture permeability (from 3.61 to 3.72 × 10-11 g m m-2 s-1 Pa-1), and oxygen barrier (from 12.84 to 8.74 × 10-13 cm3 cm cm-2 s-1 Pa-1). Glucose/glycerol co-plasticized film had the maximum tensile strength (10.12 MPa), and sucrose/glycerol co-plasticized film showed the highest Young's modulus (380.31 MPa). CONCLUSION: Sorbitol with linear structure and the lowest melting point exhibited a plasticizing capacity similar to glycerol. The molecular structure (linear or cyclic), hydroxyl group proportion and melting point of the sugar/sugar alcohol were the key factors to regulate the fine structure and properties of starch/PBAT films. © 2024 Society of Chemical Industry.

13.
Food Chem X ; 23: 101720, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39229611

ABSTRACT

In this study, tea polyphenol oxidase (PPO) was purified via three-phase partitioning (TPP) using a deep eutectic solvent (DES) instead of t-butanol. First, the properties of 13 types of synthesized DESs were characterized, and DES-7 (thymol/dodecanoic acid) was selected as the best alternative solvent. The process parameters were optimized using response surface methodology. The experimental results revealed that when the (NH4)2SO4 concentration, DES to crude extract ratio, extraction time, and pH were 41%, 0.5:1, 75 min, and 5.6, respectively, the recovery and purification fold of tea PPO were 78.44% and 8.26, respectively. SDS-PAGE and native-PAGE were used to analyze the PPO before and after purification of the TTP system, and the molecular weight and purification effect of PPO were detected. Moreover, the DES could be recovered and recycled. The results indicate an environmentally friendly and stable DES, and provide a reference for the large-scale application of TPP to extract PPO.

14.
Yeast ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39262092

ABSTRACT

Engineering the glycerol-3-phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y. lipolytica by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by dak2 was identified as the rate-limiting step. By combining NHEJ-mediated insertion mutagenesis with a push-and-pull strategy, Y. lipolytica strains with high-yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1- and 4.2-fold of starting strain.

15.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274951

ABSTRACT

Solketal, a widely used glycerol-derived solvent, can be efficiently synthesized through heterogeneous catalysis, thus avoiding the significant product losses typically encountered with aqueous work-up in homogeneous catalysis. This study explores the catalytic synthesis of solketal using solid acid catalysts derived from recovered carbon blacks (rCBs), which are obtained through the pyrolysis of end-of-life tires. This was further converted into solid acid catalysts through the introduction of acidic functional groups using concentrated H2SO4 or 4-benzenediazonium sulfonate (BDS) as sulfonating agents. Additionally, post-pyrolytic rCB treated with glucose and subsequently sulfonated with sulfuric acid was also prepared. Comprehensive characterization of the initial and modified rCBs was performed using techniques such as elemental analysis, powder X-ray diffraction, thermogravimetric analysis, a back titration method, and both scanning and transmission electron microscopy, along with X-ray photoelectron spectroscopy. The catalytic performance of these samples was evaluated through the batch mode glycerol acetalization to produce solketal. The modified rCBs exhibited substantial catalytic activity, achieving high glycerol conversions (approximately 90%) and high solketal selectivity (around 95%) within 30 min at 40 °C. This notable activity was attributed to the presence of -SO3H groups on the surface of the functionalized rCBs. Reusability tests indicated that only rCBs modified with glucose demonstrated acceptable catalytic stability in subsequent acetalization cycles. The findings underscore the potential of utilizing end-of-life tires to produce effective acid catalysts for glycerol valorization processes.

16.
Angew Chem Int Ed Engl ; : e202413457, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254544

ABSTRACT

Active oxygen species (OH*/O*) derived from water electrolysis are essential for the electrooxidation of organic compounds into high-value chemicals, which can determine activity and selectivity, whereas the relationship between them remains unclear. Herein, using glycerol (GLY) electrooxidation as a model reaction, we systematically investigated the relationship between GLY oxidation activity and the formation energy of OH* (ΔGOH*). We first identified that OH* on Au demonstrates the highest activity for GLY electrooxidation among various pure metals, based on experiments and density functional theory, and revealed that ΔGOH* on Au-based alloys is influenced by the metallic composition of OH* coordination sites. Moreover, we observed a linear correlation between the adsorption energy of GLY (Eads) and the d-band center of Au-based alloys. Comprehensive microkinetic analysis further reveals a volcano relationship between GLY oxidation activity, the ΔGOH* and the adsorption free energy of GLY (ΔGads). Notably, Au3Pd and Au3Ag alloys, positioned near the peak of the volcano plot, show excellent activity, attributed to their moderate ΔGOH* and ΔGads, striking a balance that is neither too high nor too low. This research provides theoretical insights into modulating active oxygen species from water electrolysis to enhance organic electrooxidation reactions.

17.
J Pharm Biomed Anal ; 251: 116443, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39217704

ABSTRACT

Accurate and objective estimation of the postmortem interval (PMI) is crucial in forensic practice. This study aimed to infer PMI through equations based on the relationship between PMI and metabolomics biomarkers.Rats were subjected to models representing various temperatures and causes of death, with blood collected at different intervals. Untargeted gas chromatographymass spectrometry metabolomics detection methods were developed, and candidate biomarkers were chosen as co-differentially expressed metabolites in four models. A targeted method was then developed for quantitatively determining candidate biomarkers. Animal tests and human cadaver samples with clearly documented causes of death and time were used to verify the reliability of the regression equation.Results: Unique differential metabolites for CO poisoning deaths included 2,3-butanediol, hypoxanthine, and dehydrated hexanol, while those for mechanical asphyxia deaths comprised propylamine, 1,3-propylene glycol, phosphoric acid, and sorbitol. Pyruvate, glycerol and isoleucine were identified as candidate biomarkers. Human case results demonstrated the method's potential (error rate < 20 %). The findings of this study may offer reference points for estimating PMI and causes of death in forensic practice.


Subject(s)
Asphyxia , Biomarkers , Gas Chromatography-Mass Spectrometry , Metabolomics , Postmortem Changes , Metabolomics/methods , Humans , Biomarkers/blood , Gas Chromatography-Mass Spectrometry/methods , Rats , Animals , Male , Asphyxia/blood , Rats, Sprague-Dawley , Reproducibility of Results , Autopsy , Female , Forensic Medicine/methods
18.
Chemosphere ; 364: 142995, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097114

ABSTRACT

This paper describes an alternative method for the in situ synthesis of gold nanoparticles (AuNPs) with a particle size of less than 3 nm, using nanoreactors formed by reverse micelles of 1,4-bis-(2-ethylhexyl) sulfosuccinate sodium (AOT) and nanoparticle stabilization with l-cysteine, which favor the preparation of nanoparticles with size and shape control, which are homogeneously dispersed (1% by weight) on the support of titanium dioxide nanowires (TNWs). To study the activity and selectivity of the prepared catalyst (AuNPs@TNWs), an aqueous solution of 40 mM glycerol was irradiated with a green laser (λ = 530 nm, power = 100 mW) in the presence of the catalyst and O2 as an oxidant at 22 °C for 6 h, obtaining a glycerol conversion of 86% with a selectivity towards hydroxypyruvic acid (HA) of more than 90%. From the control and reactions, we concluded that the Ti-OH groups promote the glycerol adsorption on the nanowires surface and the surface plasmon of the gold nanoparticles favors the selectivity of the reaction towards the hydroxypyruvic acid.


Subject(s)
Glycerol , Gold , Metal Nanoparticles , Nanowires , Oxidation-Reduction , Titanium , Titanium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Glycerol/chemistry , Catalysis
19.
Bioresour Technol ; 411: 131350, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39191297

ABSTRACT

Developing utilization technologies for biomass resources, exploring their applications in the fields of energy and chemical engineering, holds significant importance for promoting sustainable development and constructing a green, low-carbon society. In this study, we designed a non-natural in vitro multi-enzyme system for converting glycerol and CO2 into L-aspartic acid (L-Asp). The coupled system utilized eight enzymes, including alditol oxidase (ALDO), catalase-peroxidase (CAT), lactaldehyde dehydrogenase (ALDH), glycerate 2-kinase (GK), phosphopyruvate hydratase (PPH), phosphoenolpyruvate carboxylase (PPC), L-aspartate dehydrogenase (ASPD), and polyphosphate kinase (PPK), to convert the raw materials into L-Asp in one-pot coupled with NADH and ATP regeneration. Under optimal reaction conditions, 18.6 mM of L-Asp could be produced within 2.0 h at a total enzyme addition of 4.85 mg/mL, demonstrating the high efficiency and productivity characteristics of the designed system. Our technological application provides new insights and methods for the development of biomass resource utilization technologies.


Subject(s)
Aspartic Acid , Carbon Dioxide , Glycerol , Aspartic Acid/metabolism , Glycerol/metabolism , Glycerol/chemistry , Carbon Dioxide/metabolism , Biomass
20.
J Bacteriol ; 206(9): e0022724, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39171915

ABSTRACT

As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE: Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Glycerol , Hydrogen Peroxide , Mouth , Streptococcus mutans , Glycerol/metabolism , Hydrogen Peroxide/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Mouth/microbiology , Streptococcus sanguis/metabolism , Streptococcus sanguis/genetics , Humans , Biofilms/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL