Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2882-2888, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041147

ABSTRACT

This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of ß-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.


Subject(s)
Fusarium , Glycyrrhiza uralensis , Transformation, Genetic , Fusarium/genetics , Fusarium/growth & development , Fusarium/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/growth & development , Indoleacetic Acids/metabolism , Agrobacterium tumefaciens/genetics , Salt Tolerance/genetics
2.
Acta Pharm Sin B ; 14(7): 3125-3139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027250

ABSTRACT

Zhigancao decoction is a traditional prescription for treating irregular pulse and palpitations in China. As the monarch drug of Zhigancao decoction, the bioactive molecules of licorice against heart diseases remain elusive. We established the HRESIMS-guided method leading to the isolation of three novel bicyclic peptides, glycnsisitins A-C (1-3), with distinctive C-C and C-O-C side-chain-to-side-chain linkages from the roots of Glycyrrhiza uralensis (Licorice). Glycnsisitin A demonstrated stronger cardioprotective activity than glycnsisitins B and C in an in vitro model of doxorubicin (DOX)-induced cardiomyocyte injury. Glycnsisitin A treatment not only reduced the mortality of heart failure (HF) mice in a dose-dependent manner but also significantly attenuated DOX-induced cardiac dysfunction and myocardial fibrosis. Gene set enrichment analysis (GSEA) of the differentially expressed genes indicated that the cardioprotective effect of glycnsisitin A was mainly attributed to its ability to maintain iron homeostasis in the myocardium. Mechanistically, glycnsisitin A interacted with transferrin and facilitated its binding to the transferrin receptor (TFRC), which caused increased uptake of iron in cardiomyocytes. These findings highlight the key role of bicyclic peptides as bioactive molecules of Zhigancao decoction for the treatment of HF, and glycnsisitin A constitutes a promising therapeutic agent for the treatment of HF.

3.
Phytomedicine ; 132: 155664, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38870751

ABSTRACT

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a refractory respiratory disease mainly attributed to multiple pathological factors such as oxidative stress, infectious inflammation, and idiopathic fibrosis for decades. The medicinal plant Glycyrrhiza uralensis extract (ULE) was widely used to control respiratory diseases in China. However, the regulatory mechanism of scientific evidence to support the therapeutic benefits of ULE in the management of COPD is greatly limited. PURPOSE: This study aims to discover the potential protection mechanism of ULE on COPD via a muti-targets strategy. STUDY DESIGN AND METHODS: The present study set out to determine the potential protective effects of ULE on COPD through a multi-target strategy. In vivo and in vitro models of COPD were established using cigarette smoke and lipopolysaccharide to assess the protective effects of ULE. It was evaluated by measuring inflammatory cytokines and assessing pulmonary pathological changes. HPLC was used to verify the active compounds of the potential compounds that were collected and screened using HERB, works of literature, and ADME tools. The mechanisms of ULE in the treatment of COPD were explored using transcriptomics, connectivity-map, and network pharmacology approaches. The relevant targets were further investigated using RT-PCR, western blot, and immunohistochemistry. The HCK inhibitor (iHCK-37) was used to evaluate the potential mechanism of ULE's active compounds in the prevention of COPD. RESULTS: ULE effectively protected the lungs of COPD mice from oxidative stress, inflammation, and fibrosis damage. After screening and verification using ADME properties and HPLC, 4 active compounds were identified in ULE: liquiritin (LQ), licochalcone B (LCB), licochalcone A (LCA), and echinatin (ET). Network pharmacology integrated with transcriptomics analysis showed that ULE mitigated oxidative stress, inflammation, and fibrosis in COPD by suppressing HCK. The combination of LCB and LQ was optimized for anti-inflammation, antioxidation, and anti-fibrosis activities. The iHCK-37 further validated the preventive treatment of LCB and LQ on COPD by inhibiting HCK to exert antioxidant, anti-inflammatory, and anti-fibrotic effects. The combination of LCB and LQ, in a 1:1 ratio, exerted synergistic antioxidative, anti-inflammatory, and anti-fibrotic effects in the treatment of COPD by downregulating HCK. CONCLUSION: The combination of LCB and LQ performed a significant anti-COPD effect via downregulating HCK.

4.
Front Pharmacol ; 15: 1374179, 2024.
Article in English | MEDLINE | ID: mdl-38904004

ABSTRACT

Ethnopharmacological relevance: G. uralensis Fisch. (Glycyrrhiza uralensis) is an ancient and widely used traditional Chinese medicine with good efficacy in clearing heat and detoxifying action. Studies suggest that Glycyrrhiza Uralensis Polysaccharides (GUP), one of the major components of G. uralensis, has anti-inflammatory, anti-cancer and hepatoprotective effects., but its exact molecular mechanism has not been explored in depth. Aim of the study: Objectives of our research are about exploring the anti-inflammatory role of GUP and the mechanisms of its action. Materials and methods: ELISA kits, Western blotting, immunofluorescence, quantitative real-time PCR, immunoprecipitation and DMXAA-mediated STING activation mice models were performed to investigate the role of GUP on the cGAS-STING pathway. To determine the anti-inflammatory effects of GUP, cecal ligation and puncture (CLP) sepsis models were employed. Results: GUP could effectively inhibit the activation of the cGAS-STING signaling pathway accompany by a decrease the expression of type I interferon-related genes and inflammatory factors in BMDMs, THP-1, and human PBMCs. Mechanistically, GUP does not affect the oligomerization of STING, but affects the interaction of STING with TBK1 and TBK1 with IRF3. Significantly, GUP had great therapeutic effects on DMXAA-induced agonist experiments in vivo as well as CLP sepsis in mice. Conclusion: Our studies suggest that GUP is an effective inhibitor of the cGAS-STING pathway, which may be a potential medicine for the treatment of inflammatory diseases mediated by the cGAS-STING pathway.

5.
Food Chem ; 451: 139461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701733

ABSTRACT

Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (∼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.


Subject(s)
Copper , Electrochemical Techniques , Food Contamination , Luminescent Measurements , Copper/analysis , Copper/chemistry , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/methods , Aptamers, Nucleotide/chemistry , Quantum Dots/chemistry
6.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Article in English | MEDLINE | ID: mdl-38742846

ABSTRACT

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Subject(s)
Glycyrrhiza uralensis , Molecular Docking Simulation , Network Pharmacology , Osteoarthritis, Knee , Animals , Glycyrrhiza uralensis/chemistry , Mice , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Male , Disease Models, Animal , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice, Inbred C57BL
7.
J Nat Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775894

ABSTRACT

The development of new cultivars is essential for establishing a method of producing licorice in Japan. A suitable new cultivar for domestic licorice production, known as the interspecific hybrid strain C-18, was developed by crossbreeding Glycyrrhiza uralensis Fisch. (as the seed parent, possessing a high glycyrrhizin (GL) content, strain OMP-28) and Glycyrrhiza glabra L. (as the pollen parent, known for vigorous growth, strain OMP-10). Both G. uralensis and G. glabra are specified in the Pharmacopoeia of Japan (18th edition) as the source plants for Glycyrrhizae Radix. After 2 years of cultivation, strain C-18 exhibited robust growth, with a fresh weight of 148.8 g and a stem diameter of 0.89 mm. The GL content in the dry weight was measured at 3.61%. Seedlings cultivated from rhizomes in the field for 2 years showed a tap root fresh weight per plant of 120 ± 21 g, with an average GL content relative to the dry weight of 2.68% ± 0.38%. Although glabridin, a characteristic compound of G. glabra, was not detected, glycycoumarin, a characteristic compound of G. uralensis, was detected via HPLC analysis. Strain C-18 contained glycycoumarin as a characteristic compound of G. uralensis but lacked glabridin, a compound characteristic of G. glabra. Additionally, 2,3-dehydrokievitone (1) and parvisoflavone A (2) were identified as distinctive components of the interspecific hybrid (G. uralensis × G. glabra) C-18.

8.
Plants (Basel) ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38498448

ABSTRACT

The occurrence of different degrees of phosphorus deficiency in the vast majority of G. uralensis cultivation regions worldwide is common. There is a pressing need within the cultivated G. uralensis industry to identify appropriate exogenous substances that can enhance the uptake of phosphorus and improve both the yield and quality of the taproots of G. uralensis. This study was conducted to investigate the fine root and taproot morphology, physiological characteristics, and secondary metabolite accumulation in response to the supply of varying concentrations of LaCl3 to G. uralensis, to determine the optimal concentration of LaCl3 that can effectively enhance the yield and quality of G. uralensis's taproots, while also alleviating its reliance on soil phosphate fertilizer. The findings indicate that the foliar application of lanthanum enhanced root activity and increased APase activity, eliciting alterations in the fine root morphology, leading to promoting the accumulation of biomass in grown G. uralensis when subjected to P-deficient conditions. Furthermore, it was observed that the nutrient uptake of G. uralensis was significantly improved when subjected to P-deficient conditions but treated with LaCl3. Additionally, the yield and quality of the medicinal organs of G. uralensis were significantly enhanced.

9.
Int J Biol Macromol ; 264(Pt 1): 130622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447833

ABSTRACT

T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glycyrrhiza uralensis , Mice , Humans , Animals , Glycyrrhiza uralensis/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL
10.
J Agric Food Chem ; 72(10): 5477-5490, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416716

ABSTRACT

Glycyrrhiza uralensis is a saline-alkali-tolerant plant whose aerial parts are rich in flavonoids; however, the role of these flavonoids in saline-alkali tolerance remains unclear. Herein, we performed physiological, metabolomics, and transcriptomics analyses in G. uralensis leaves under alkaline salt stress for different durations. Alkaline salt stress stimulated excessive accumulation of reactive oxygen species and consequently destroyed the cell membrane, causing cell death, and G. uralensis initiated osmotic regulation and the antioxidant system to respond to stress. In total, 803 metabolites, including 244 flavonoids, were detected via metabolomics analysis. Differentially altered metabolites and differentially expressed genes were coenriched in flavonoid-related pathways. Genes such as novel.4890, Glyur001511s00039602, and Glyur000775s00025737 were highly expressed, and flavonoid metabolites such as 2'-hydroxygenistein, apigenin, and 3-O-methylquercetin were upregulated. Thus, flavonoids as nonenzymatic antioxidants play an important role in stress tolerance. These findings provide novel insights into the response of G. uralensis to alkaline salt stress.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genetics , Flavonoids/metabolism , Salt Stress , Antioxidants/metabolism , Gene Expression Profiling , Alkalies/metabolism , Glycyrrhiza/genetics
11.
Food Sci Biotechnol ; 33(1): 91-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186628

ABSTRACT

Licorice from Glycyrrhiza uralensis roots is used in foods and medicines. Although we are aware that licorice roots and leaves have distinct material compositions, the specific reasons for these differences remain unknown. Comparison of the metabolomes and transcriptomes between the leaves and roots revealed flavonoids and triterpenoid saponins were significantly different. Isoflavones were enriched in roots because of upregulation of genes encoding chalcone isomerase and flavone synthase, which are involved in isoflavone synthesis. Six triterpenoid saponins were significantly enriched only in the roots. The leaves did not accumulate glycyrrhetinic acid because of low expression levels of genes involved in its synthesis. A gene encoding a UDP glycosyltransferase, which likely catalyzes the key step in the transformation of glycyrrhetinic acid to glycyrrhizin, was screened. Our results provide information about the differences in flavonoid and triterpenoid synthesis between roots and leaves, and highlight targets for genetic engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01467-y.

12.
J Ethnopharmacol ; 319(Pt 3): 117372, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37913830

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea bulbifera L. (Rhizoma Dioscoreae Bulbiferae; RDB) is commonly used as an expectorant and cough suppressant herb but is accompanied by severe hepatotoxicity. Using the juice of auxiliary herbs (such as Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix et Rhizoma; GRR) juice) in concocting poisonous Chinese medicine is a conventional method to reduce toxicity or increase effects. Our previous study found that concoction with GRR juice provided a detoxifying effect against the major toxic hepatotoxicity induced by RDB, but the principle for the detoxification of the concoction is unknown to date. AIM OF THE STUDY: The principle of concoction was investigated by using the processing excipient GRR juice to reduce the major toxic hepatotoxicity of RDB, and the efficacy of RDB as an expectorant and cough suppressant was enhanced. MATERIALS AND METHODS: In this study, common factors (RDB:GRR ratio, concocted temperature, and concocted time) in the concoction process were used for the preparation of each RDB concocted with GRR juice by using an orthogonal experimental design. We measured the content of the main toxic compound diosbulbin B (DB) and serum biochemical indicators and performed pathological analysis in liver tissues of mice to determine the best detoxification process of RDB concocted with GRR juice. On this basis, the biological mechanisms of target organs were detected by Western blot and enzyme-linked immunosorbent assay at the inflammation and apoptosis levels. Further, the effects of RDB on expectorant and cough suppressant with GRR juice were evaluated by the conventional tests of phenol red expectorant and concentrated ammonia-induced cough. Lastly, the major compounds in the GRR juice introduced to RDB concoction were determined. RESULTS: RDB concocted with GRR juice significantly alleviated DB content, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase levels, and improved liver pathological damages. The best detoxification process was achieved by using an RDB:GRR ratio of 100:20 at 120 °C for 20 min. Further, RDB concocted with GRR juice down-regulated the protein levels of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), and Bcl-2 related X protein (Bax) in the liver and enhanced the expectorant and cough suppressant effects of RDB. Finally, liquiritin (LQ) and glycyrrhizic acid (GA) in the GRR juice were introduced to the RDB concoction. CONCLUSION: Concoction with GRR juice not only effectively reduced the major toxic hepatotoxicity of RDB but also enhanced its main efficacy as an expectorant and cough suppressant, and that the rationale for the detoxification and/or potentiation of RDB was related to the reduction in the content of the main hepatotoxic compound, DB, the introduction of the hepatoprotective active compounds, LQ and GA, in the auxiliary GRR juice, as well as the inhibition of NF-κB/COX-2/Bax signaling-mediated inflammation and apoptosis.


Subject(s)
Antitussive Agents , Chemical and Drug Induced Liver Injury , Dioscorea , Drugs, Chinese Herbal , Glycyrrhiza uralensis , Glycyrrhiza , Mice , Animals , Glycyrrhiza uralensis/chemistry , Expectorants , Antitussive Agents/pharmacology , Excipients , Dioscorea/chemistry , NF-kappa B , Cyclooxygenase 2 , bcl-2-Associated X Protein , Drugs, Chinese Herbal/analysis , Glycyrrhiza/chemistry , Inflammation
13.
Gut Microbes ; 15(2): 2276814, 2023 12.
Article in English | MEDLINE | ID: mdl-37948152

ABSTRACT

Low molecular weight (6.5 kDa) Glycyrrhiza polysaccharide (GP) exhibits good immunomodulatory activity, however, the mechanism underlying GP-mediated regulation of immunity and gut microbiota remains unclear. In this study, we aimed to reveal the mechanisms underlying GP-mediated regulation of immunity and gut microbiota using cyclophosphamide (CTX)-induced immunosuppressed and intestinal mucosal injury models. GP reversed CTX-induced intestinal structural damage and increased the number of goblet cells, CD4+, CD8+ T lymphocytes, and mucin content, particularly by maintaining the balance of helper T lymphocyte 1/helper T lymphocyte 2 (Th1/Th2). Moreover, GP alleviated immunosuppression by down-regulating extracellular regulated protein kinases/p38/nuclear factor kappa-Bp50 pathways and increasing short-chain fatty acids level and secretion of cytokines, including interferon-γ, interleukin (IL)-4, IL-2, IL-10, IL-22, and transforming growth factor-ß3 and immunoglobulin (Ig) M, IgG and secretory immunoglobulin A. GP treatment increased the total species and diversity of the gut microbiota. Microbiota analysis showed that GP promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Alistipes, Lachnospiraceae_NK4A136_group, Ligilactobacillus, and Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria and CTX-derived bacteria (Clostridiales_unclassified, Candidatus_Arthromitus, Firmicutes_unclassified, and Clostridium). The studies of fecal microbiota transplantation and the pseudo-aseptic model conformed that the gut microbiota is crucial in GP-mediated immunity regulation. GP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.


Subject(s)
Gastrointestinal Microbiome , Glycyrrhiza , Gastrointestinal Microbiome/physiology , Molecular Weight , Polysaccharides/pharmacology , Immunity
14.
Front Plant Sci ; 14: 1229253, 2023.
Article in English | MEDLINE | ID: mdl-38023834

ABSTRACT

The roots and rhizomes of Glycyrrhiza uralensis Fisch. represent the oldest and most frequently used herbal medicines in Eastern and Western countries. However, the quality of cultivated G. uralensis has not been adequate to meet the market demand, thereby exerting increased pressure on wild G. uralensis populations. Nitrogen, vital for plant growth, potentially influences the bioactive constituents of plants. Yet, more information is needed regarding the effect of different forms of nitrogen on G. uralensis. G. uralensis seedlings were exposed to a modified Hoagland nutrient solution (HNS), varying concentrations of nitrate (KNO3), or ammonium (NH4)2SO4. We subsequently obtained the roots of G. uralensis for physiology, transcriptomics, and metabolomics analyses. Our results indicated that medium-level ammonium nitrogen was more effective in promoting G. uralensis growth compared to nitrate nitrogen. However, low-level nitrate nitrogen distinctly accelerated the accumulation of flavonoid ingredients. Illumina sequencing of cDNA libraries prepared from four groups-treated independently with low/medium NH4 + or NO3 - identified 364, 96, 103, and 64 differentially expressed genes (DEGs) in each group. Our investigation revealed a general molecular and physiological metabolism stimulation under exclusive NH4 + or NO3 - conditions. This included nitrogen absorption and assimilation, glycolysis, Tricarboxylic acid (TCA) cycle, flavonoid, and triterpenoid metabolism. By creating and combining putative biosynthesis networks of nitrogen metabolism, flavonoids, and triterpenoids with related structural DEGs, we observed a positive correlation between the expression trend of DEGs and flavonoid accumulation. Notably, treatments with low-level NH4 + or medium-level NO3 - positively improved primary metabolism, including amino acids, TCA cycle, and glycolysis metabolism. Meanwhile, low-level NH4 + and NO3 - treatment positively regulated secondary metabolism, especially the biosynthesis of flavonoids in G. uralensis. Our study lays the foundation for a comprehensive analysis of molecular responses to varied nitrogen forms in G. uralensis, which should help understand the relationships between responsive genes and subsequent metabolic reactions. Furthermore, our results provide new insights into the fundamental mechanisms underlying the treatment of G. uralensis and other Glycyrrhiza plants with different nitrogen forms.

15.
J Agric Food Chem ; 71(42): 15485-15496, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37828905

ABSTRACT

Soil salinity is a severe abiotic stress that reduces crop productivity. Recently, there has been growing interest in the application of microbes, mainly plant-growth-promoting bacteria (PGPB), as inoculants for saline land restoration and plant salinity tolerance. Herein, the effects of the plant endophyte G2 on regulating soil N cycle, plant N uptake and assimilate pathways, proline and glycine betaine biosynthesis, and catabolic pathways were investigated in Glycyrrhiza uralensis exposed to salinity. The results indicated that G2 improved the efficiency of N absorption and assimilation of plants by facilitating soil N cycling. Then, G2 promoted the synthesis substrates of proline and glycine betaine and accelerated its synthesis rate, which increased the relative water content and reduced the electrolyte leakage, eventually protecting the membrane system caused by salt stress in G. uralensis. These findings will provide a new idea from soil to plant systems in a salinity environment.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/metabolism , Proline/metabolism , Bacillus cereus , Betaine/pharmacology , Salt Stress
16.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4413-4420, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802867

ABSTRACT

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/chemistry , Plant Components, Aerial/chemistry
17.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892843

ABSTRACT

Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.

18.
Medicina (Kaunas) ; 59(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37893489

ABSTRACT

Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.


Subject(s)
Anti-Infective Agents , Halitosis , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Streptococcus mutans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
19.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894521

ABSTRACT

Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genetics , Droughts , Multiomics , Proteome/metabolism , Plant Breeding , Flavonoids/metabolism , Glycyrrhizic Acid/metabolism , Gene Expression Regulation, Plant , Transcriptome
20.
Int J Dent Hyg ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37635655

ABSTRACT

OBJECTIVES: This study was conducted in order to determine the effect on halitosis and the antibacterial effect against halitosis-causing bacteria of the mouthwash made of the natural material, Glycyrrhiza uralensis (G. uralensis) extract. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled study was conducted on 60 patients who visited M dental clinic located in Busan, South Korea, excluding those with systemic disease that may induce halitosis. There were 30 patients classified to the saline gargle group and the remaining 30 patients were classified to the G. uralensis extract gargle group. In addition, their level of halitosis and halitosis-causing bacteria were measured. They visited the dental clinic on a fasted state at baseline before gargle application (Baseline), immediately after gargle application (Treatment) and 5 days after gargle application (After 5 Days). For clinical indicators, participants were tested for halitosis and bacteria immediately after waking up without brushing their teeth and without hydration. RESULTS: The prevalence of halitosis decreased in the G. uralensis extract gargle group compared to the saline gargle group at Treatment and After 5 Days. In cases with pseudo halitosis, there was a significant decrease in halitosis-causing bacteria when G. uralensis extract gargle was applied (p < 0.05). CONCLUSIONS: It was identified that using a mouthwash made with G. uralensis extract is effective for halitosis improvement and reduction of halitosis-causing bacteria. Therefore, using a mouthwash containing G. uralensis extract, it will be effective in improving bad breath and oral hygiene will be possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...