Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 452
Filter
1.
Pathol Res Pract ; 260: 155461, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038388

ABSTRACT

Goblet cell adenocarcinoma (GCA) is a distinctive type of endocrine-exocrine mixed tumor, exhibiting intermediate morphological features between neuroendocrine tumor and adenocarcinoma. It predominantly arises in the appendix, but primary extra-appendiceal GCA is extremely rare. Here, we presented six cases of primary extra-appendiceal GCA from 2016 to 2022. Notably, one case was originating in the bladder which was the first report of primary GCA to occur outside the digestive tract. The tumors frequently displayed variable goblet cell morphology, characterized by cytoplasmic mucin accumulation and basally located nucleus. Low-grade components typically exhibited glandular or clustered patterns without prominent fibrotic responses. High-grade components demonstrated cribriform, cluster and single-file arrangement accompanied by marked fibrous reactions. Immunohistochemically, the tumors showed positivity for both neuroendocrine markers(synaptophysin, chromogranin A, CD56 )and adenoids markers(CDX-2, CK20). Next-generation sequencing revealed the most prevalent mutated genes within GCAs were TP53. Due to their morphological and immunohistochemical similarities to primary appendiceal GCA counterparts, we propose a distinct category for extra-appendiceal Goblet cell adenocarcinoma.

2.
Surg Case Rep ; 10(1): 168, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980456

ABSTRACT

BACKGROUND: Appendiceal goblet cell adenocarcinoma (AGCA) is a newly proposed cancer type in the 5th edition of the WHO Classification of Tumours in 2019. We experienced this rare form of appendiceal primary neoplasm. CASE PRESENTATION: An 85-year-old male presented a positive fecal occult blood test. A series of imagings revealed a type 1 tumor, located on the appendiceal orifice. The subsequent biopsy made the diagnosis of signet-ring cell carcinoma. Consequently, he underwent the laparoscopic-assisted ileocecal resection. Initially, the tumor was suspected to be a Goblet cell carcinoid (GCC). There was a discrepancy between the histological and immunostaining findings: the tumor cells exhibited morphological similarities to GCCs, however displayed limited staining upon immunostaining. Ultimately, we concluded that the tumor should be classified as AGCA, by following WHO 5th Edition. AGCA represents a newly categorized subtype of adenocarcinomas. Because of our preoperative suspicion of malignancy, we performed tumor resection with regional lymph node dissection, despite the fact that most appendiceal malignant tumors are typically identified after an appendectomy. CONCLUSION: We experienced a case that provides valuable insights into the comprehension of AGCA, a recently established pathological entity in the WHO 5th Edition. This article is an acceptable secondary publication of a case report that appeared in Azuma et al. (J Jpn Surg Assoc 83:1103-1108, 2022).

3.
Sci Rep ; 14(1): 16849, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039235

ABSTRACT

The colonic epithelium is comprised of three-dimensional crypts (3D) lined with mucus secreted by a heterogeneous population of goblet cells. In this study, we report the formation of a long-lived, and self-renewing replica of human 3D crypts with a mucus layer patterned in the X-Y-Z dimensions. Primary colon cells were cultured on a shaped scaffold under an air-liquid interface to yield architecturally accurate crypts with a mucus bilayer (605 ± 180 µm thick) possessing an inner (149 ± 50 µm) and outer (435 ± 111 µm) region. Lectins with distinct carbohydrate-binding preferences demonstrated that the mucus in the intercrypt regions was chemically distinct from that above and within the crypts replicating in vivo chemical patterning. Constitutive mucus secretion ejected beads from crypt lumens in 8-10 days, while agonist-stimulated secretion increased mucus thickness by 17-fold in 8 h. The tissue was long-lived, > 50 days, the longest time assessed. In conclusion, the in vitro mucus replicated key physiology of the human mucus, including the bilayer (Z) structure and intercrypt-crypt (X-Y) zones, constitutive mucus flow, spatially complex chemical attributes, and mucus secretion response to stimulation, with the potential to reveal local and global determinants of mucus function and its breakdown in disease.


Subject(s)
Colon , Mucus , Humans , Mucus/metabolism , Colon/metabolism , Intestinal Mucosa/metabolism , Cells, Cultured , Models, Biological , Goblet Cells/metabolism
4.
Curr Oncol ; 31(7): 3855-3869, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39057157

ABSTRACT

INTRODUCTION: Right hemicolectomy (RHC) remains the treatment standard for goblet cell adenocarcinoma (GCA), despite limited evidence supporting survival benefit. This study aims to explore factors influencing surgical management and survival outcomes among patients treated with RHC or appendicectomy using NCRAS (UK) and SEER (USA) data. METHODS: A retrospective analysis was conducted using 998 (NCRAS) and 1703 (SEER) cases. Factors influencing procedure type were explored using logistic regression analyses. Overall survival (OS) probabilities and Kaplan-Meier (KM) plots were generated using KM analysis and the log-rank test compared survival between groups. Cox regression analyses were performed to assess hazard ratios. RESULTS: The NCRAS analysis revealed that age and regional stage disease were determinants of undergoing RHC, with all age groups showing similar odds of receiving RHC, excluding the 75+ age group. The SEER analysis revealed tumour size > 2 cm, and receipt of chemotherapy were determinants of undergoing RHC, unlike the distant stage, which was associated with appendicectomy. Surgery type was not a significant predictor of OS in both analyses. In NCRAS, age and stage were significant predictors of OS. In SEER, age, stage, and Black race were significant predictors of worse OS. CONCLUSIONS: The study shows variations in the surgical management of GCA, with limited evidence to support a widespread recommendation for RHC.


Subject(s)
Adenocarcinoma , Appendectomy , Colectomy , Humans , Colectomy/methods , Colectomy/statistics & numerical data , Appendectomy/methods , Male , Female , Aged , Middle Aged , Adenocarcinoma/surgery , Retrospective Studies , SEER Program , Databases, Factual , Adult , Aged, 80 and over
5.
Arerugi ; 73(5): 422-423, 2024.
Article in Japanese | MEDLINE | ID: mdl-39010202
6.
Acta Pharm Sin B ; 14(7): 3049-3067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027246

ABSTRACT

The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.

7.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932125

ABSTRACT

The COVID-19 pandemic, which emerged in early 2020, has had a profound and lasting impact on global health, resulting in over 7.0 million deaths and persistent challenges. In addition to acute concerns, there is growing attention being given to the long COVID health consequences for survivors of COVID-19 with documented cases of cardiovascular abnormalities, liver disturbances, lung complications, kidney issues, and noticeable cognitive deficits. Recent studies have investigated the physiological changes in various organs following prolonged exposure to murine hepatitis virus-1 (MHV-1), a coronavirus, in mouse models. One significant finding relates to the effects on the gastrointestinal tract, an area previously understudied regarding the long-lasting effects of COVID-19. This research sheds light on important observations in the intestines during both the acute and the prolonged phases following MHV-1 infection, which parallel specific changes seen in humans after exposure to SARS-CoV-2. Our study investigates the histopathological alterations in the small intestine following MHV-1 infection in murine models, revealing significant changes reminiscent of inflammatory bowel disease (IBD), celiac disease. Notable findings include mucosal inflammation, lymphoid hyperplasia, goblet cell hyperplasia, and immune cell infiltration, mirroring pathological features observed in IBD. Additionally, MHV-1 infection induces villous atrophy, altered epithelial integrity, and inflammatory responses akin to celiac disease and IBD. SPIKENET (SPK) treatment effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue architecture and ameliorating inflammatory responses. Furthermore, investigation into long COVID reveals intricate inflammatory profiles, highlighting the potential of SPK to modulate intestinal responses and restore tissue homeostasis. Understanding these histopathological alterations provides valuable insights into the pathogenesis of COVID-induced gastrointestinal complications and informs the development of targeted therapeutic strategies.


Subject(s)
COVID-19 , Disease Models, Animal , Murine hepatitis virus , SARS-CoV-2 , Animals , Mice , COVID-19/pathology , COVID-19/virology , COVID-19/immunology , Murine hepatitis virus/pathogenicity , SARS-CoV-2/pathogenicity , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Intestines/pathology , Intestines/virology , Intestine, Small/virology , Intestine, Small/pathology , Female
8.
Microsc Res Tech ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845567

ABSTRACT

Coccidiosis poses significant hazards to animals, particularly in terms of compromised health, reduced productivity, and economic losses in livestock farming. The conventional treatments for coccidiosis often involve synthetic drugs, contributing to concerns about drug resistance and environmental impact. The pressing need for eco-friendly alternatives is highlighted in this study, emphasizing the importance of exploring medicinal plants like Cassia alata leaf extracts (CAE) against Eimeria papillata-induced infection in mice. The CAE exhibited significant phenolic (2.17 ± 0.03 g/100 g) and flavonoid (0.14 ± 0.01 g/100 g) content and demonstrated notable antioxidant activity. In infected mice, the CAE treatment led to a substantial reduction in oocyst output (~6 fold), ameliorating necrotic enteritis and inflammatory changes in the jejunum. Additionally, CAE treatment increased goblet cell numbers (9.3 ± 0.1 / villus) and decreased macrophage infiltration in the intestinal villi. Molecular analyses revealed CAE's positive modulation of MUC2 gene and notably reduced the levels of pro-inflammatory cytokines (specifically IL-1ß, IL-10, and IFN-γ) when contrasted with the infected cohort. Furthermore, CAE treatment significantly reduced nitric oxide levels (44.03 ± 2.4 µmol/mg), showcasing its anti-inflammatory properties. The findings of this study not only contribute to the understanding of CAE's therapeutic potential but also underscore the importance of seeking eco-friendly alternatives in the face of coccidiosis challenges, addressing both the well-being of animals and the sustainability of agricultural practices. RESEARCH HIGHLIGHTS: Cassia alata extract (CAE) exhibited significant phenolic and flavonoid content, displaying notable antioxidant activity. In infected mice, CAE treatment led to a substantial reduction in oocyst output, ameliorating necrotic enteritis and inflammatory changes in the jejunum. CAE treatment increased goblet cell numbers and decreased macrophage infiltration in the intestinal villi, while molecular analyses revealed its positive modulation of the MUC2 gene and notable reduction in pro-inflammatory cytokine levels. Additionally, CAE treatment significantly reduced nitric oxide levels, showcasing its anti-inflammatory properties.

9.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928356

ABSTRACT

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Subject(s)
Basement Membrane , Cell Differentiation , Epithelial Cells , Polyesters , Humans , Polyesters/chemistry , Basement Membrane/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Nanofibers/chemistry , Cells, Cultured , Bronchi/cytology , Bronchi/metabolism
10.
Vet Microbiol ; 295: 110152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896938

ABSTRACT

The intestinal barrier of newborn piglets is vulnerable and underdeveloped, making them susceptible to enteric virus infections. Benzoic acid (BA), employed as a growth promoter, exhibits the potential to enhance the gut health of piglets by modulating intestinal morphometry and tight junction dynamics. However, the extent to which BA regulates the intestinal mucus barrier through its impact on stem cells remains inadequately elucidated. Therefore, this study was conducted to investigate the effects of BA on the intestinal barrier and the differentiation of intestinal stem cells, employing in vivo piglet and in vitro intestinal organoid models. Our investigation revealed a significant increase in the number of goblet cells within the small intestine, as well as the strengthening of the mucus barrier in vivo following oral treatment with BA, providing partial protection against PEDV infection in piglets. Additionally, in vitro cultivation of enteroids with BA led to a notable increase in the number of MUC2+ GCs, indicating the promotion of GC differentiation by BA. Furthermore, transcriptome analysis revealed an upregulation of the number of GCs and the expression of cell vesicle transport-related genes during BA stimulation, accompanied by the downregulation of the Wnt and Notch signaling pathways. Mechanistically, MCT1 facilitated the transport of BA, subsequently activating the MAPK pathway to mediate GC differentiation. Overall, this study highlights a novel function for BA as a feed additive in enhancing the intestinal mucus barrier by promoting intestinal GC differentiation, and further prevents viral infection in piglets.


Subject(s)
Benzoic Acid , Coronavirus Infections , Intestinal Mucosa , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Benzoic Acid/pharmacology , Swine Diseases/virology , Swine Diseases/drug therapy , Porcine epidemic diarrhea virus/drug effects , Porcine epidemic diarrhea virus/physiology , Intestinal Mucosa/drug effects , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/drug therapy , Animals, Newborn , Goblet Cells/drug effects , Cell Differentiation/drug effects , Organoids/virology , Organoids/drug effects , Intestines/virology , Intestines/drug effects
11.
Poult Sci ; 103(9): 103958, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38945002

ABSTRACT

This study aimed to investigate how various selenium sources affect the intestinal health of broiler chickens. A total of 384, one-day-old Arbor Acres broilers were weighed and randomly allocated to four treatment groups. The control diet was a basal diet added with: 0.2 mg/kg Sodium Selenite (SS-control), 0.2 mg/kg Selenium nano-particles (Nano-Se), 0.2 mg/kg Selenomethionine (SeMet), and 0.2 mg/kg Selenocysteine (Sec) as the treatments. The results indicated that Nano-Se and SeMet were effective in enhancing the villus height (VH) and the villus height/crypt depth ratio (VH/CD) in the jejunum compared to (SS) (P < 0.05). The inclusion of Nano-Se into the diets increased the mRNA levels of zonula occluden-1 (ZO-1), ZO-2, Occludin, Claudin-1, and Claudin-3 compared to the SS diet (P < 0.05). The SeMet increased the levels of ZO-1 and Claudin-3 compared to the SS (P < 0.05). Moreover, SeMet upregulated the marker genes of intestinal enteroendocrine cells, stem cells, and epithelial cells compared to the SS diet (P < 0.05). However, supplementation of Nano-Se reduced the mRNA levels of interleukin 1ß (IL-1ß), and IL-8 and the concentration of reactive oxygen species (ROS) in the jejunum compared to the SS (P < 0.05). The Nano-Se and SeMet also increased the protein levels of CAT and SOD compared to the SS and Sec diet (P < 0.05). The number of the goblet cells and Mucin-2 (Muc2) levels were the highest in the Nano-Se group (P < 0.05). The protein expression levels of goblet cell differentiation regulator (v-myc avian myelocytomatosis viral oncogene homolog, c-Myc) were highest in the Nano-Se compared to the SS diet (P < 0.05). The Nano-Se decreased the mRNA and protein levels of NLRP3 signaling pathway-related genes compared to the SS diet (P < 0.05). In conclusion, our study demonstrated that Nano-Se and SeMet are better at improving the intestinal health of 21-day-old broilers. Additionally, Nano-Se demonstrated superior antioxidant and anti-inflammatory effects, promoting the development of intestinal goblet cells by modifying the NLRP3 signaling pathway.

12.
Int J Surg Case Rep ; 121: 109938, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38945017

ABSTRACT

INTRODUCTION: Goblet cell adenocarcinoma of the appendix is a rare diagnosis with features of both adenocarcinomas and carcinoid tumors. Commonly presenting with chronic abdominal pain, appendicitis, or abdominal distention, it can also be incidentally discovered during appendectomies. CASE PRESENTATION: A 50-year-old man with right lower abdominal pain was admitted to our hospital, which is a critical care center. A computed tomography(CT) scan showed ileal narrowing, but endoscopy found no strictures. He was admitted with suspected bowel obstruction and improved with an ileal tube. Laparoscopic surgery revealed a tumor of the appendix. Histologically, he was diagnosed goblet cell adenocarcinoma, suggesting tumor infiltration of nerve fibers impairing peristalsis. DISCUSSION: Goblet cell adenocarcinoma of the appendix has unique histology and a poor prognosis. Treatment typically involves surgery and chemotherapy. This case highlights challenges in preoperative diagnosis, with the tumor causing bowel pseudo-obstruction by invading the intestinal wall and nerve plexus. Extensive infiltration of Auerbach's plexus was observed, consistent with the length of intestinal stenosis. CONCLUSION: This case describes goblet cell adenocarcinoma of the appendix leading to bowel pseudo-obstruction due to ileal end stenosis. It emphasizes the importance of considering this diagnosis in cases of bowel obstruction without an obvious mass.

13.
Curr Eye Res ; : 1-9, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856074

ABSTRACT

PURPOSE: Dry eye syndrome is a common ocular disease that causes morbidity, high healthcare burden, and decreased quality of life. In this study, we evaluated the beneficial effects of a standardized extract of small black soybean (EYESOY®) in a benzalkonium chloride (BAC)-induced murine model of dry eye. METHODS: Experimental dry eye was induced by instillation of 0.02% BAC on the right eye of the Sprague-Dawley rats. Saline solution or EYESOY were administered orally every day for 8 weeks. RESULTS: EYESOY significantly improved tear volume in the cornea compared with that in the BAC group. Moreover, EYESOY inhibited damage to the corneal epithelial cells and lacrimal glands by suppressing the oxidative and inflammatory responses in a mouse dry eye model. It also increased the goblet cell density and mucin integrity in the conjunctiva. CONCLUSIONS: Our results suggest that EYESOY has the potential to alleviate dry eye syndrome.

14.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759536

ABSTRACT

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Subject(s)
Chromium , Colon , Mucin-2 , Nickel , Animals , Chromium/toxicity , Nickel/toxicity , Mice , Colon/drug effects , Colon/pathology , Mucin-2/genetics , Mucin-2/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Gene Expression Profiling , Male , Digestion/drug effects , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Transcriptome/drug effects , Occludin/metabolism , Occludin/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
15.
Animals (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791715

ABSTRACT

The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.

16.
Article in English | MEDLINE | ID: mdl-38779734

ABSTRACT

AIMS: The aim of this study was to investigate the role of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) in regulating the intestinal type 2 immune response for either protection or therapy. BACKGROUND: hUCMSC-Exo was considered a novel cell-free therapeutic product that shows promise in the treatment of various diseases. Type 2 immunity is a protective immune response classified as T-helper type 2 (Th2) cells and is associated with helminthic infections and allergic diseases. The effect of hUCMSC-Exo on intestinal type 2 immune response is not clear. METHOD: C57BL/6 mice were used to establish intestinal type 2 immune response by administering of H.poly and treated with hUCMSC-Exo before or after H.poly infection. Intestinal organoids were isolated and co-cultured with IL-4 and hUCMSC-Exo. Then, we monitored the influence of hUCMSC-Exo on type 2 immune response by checking adult worms, the hyperplasia of tuft and goblet cells. RESULT: hUCMSC-Exo significantly delays the colonization of H.poly in subserosal layer of duodenum on day 7 post-infection and promotes the hyperplasia of tuft cells and goblet cells on day 14 post-infection. HUCMSC-Exo enhances the expansion of tuft cells in IL-4 treated intestinal organoids, and promotes lytic cell death. CONCLUSION: Our study demonstrates hUCMSC-Exo may benefit the host by increasing the tolerance at an early infection stage and then enhancing the intestinal type 2 immune response to impede the helminth during Th2 priming. Our results show hUCMSC-Exo may be a positive regulator of type 2 immune response, suggesting hUCMSC-Exo has a potential therapeutic effect on allergic diseases.

17.
Cureus ; 16(4): e58592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765361

ABSTRACT

Goblet cell adenocarcinoma (GCA) is known as an amphicrine tumor often seen in the appendix. Here, we report a rare case of GCA in the stomach. An 80-year-old man underwent gastroscopy due to epigastric pain and was diagnosed with gastric cancer. He received total gastrectomy and histology showed a mixture of a moderately-differentiated tubular adenocarcinoma, a mucinous adenocarcinoma, and a tumor composed of goblet-like mucinous cells with neuroendocrine differentiation. The tumor volume ratio was about 4:1:5, respectively, and a final diagnosis of GCA was made. The metastasis of the regional lymph node was occupied by only the component of goblet-like cells. GCA should be recognized as a rare histologic subtype of gastric cancer.

18.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612809

ABSTRACT

Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.


Subject(s)
Chorioamnionitis , Ureaplasma Infections , Pregnancy , Sheep , Animals , Humans , Female , Infant, Newborn , Ureaplasma Infections/complications , Intestines , Causality , Mucus
19.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677782

ABSTRACT

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Subject(s)
Cell Differentiation , Cell Proliferation , Goblet Cells , Interleukin-13 , Medicine, Kampo , Metaplasia , Mucin 5AC , Mucus , Animals , Goblet Cells/drug effects , Goblet Cells/pathology , Goblet Cells/metabolism , Interleukin-13/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Cell Differentiation/drug effects , Guinea Pigs , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Cells, Cultured , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Male , Gene Expression/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice , Trachea/cytology , Trachea/drug effects , Trachea/pathology , Trachea/metabolism
20.
Respir Res ; 25(1): 120, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468259

ABSTRACT

BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quercetin , Humans , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/metabolism , Interleukin-8/metabolism , Dimethyl Sulfoxide/metabolism , Dimethyl Sulfoxide/pharmacology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Bronchi/metabolism , Epithelial Cells/metabolism , Cells, Cultured , Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...