Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Radiol Phys Technol ; 17(1): 153-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37991701

ABSTRACT

The utilization of contrast agents in magnetic resonance imaging (MRI) has become increasingly important in clinical diagnosis. However, the low diagnostic specificity of this technique is a limiting factor for the early detection of tumors. To develop a new contrast agent with a specific target for early stage tumors, we present the synthesis and characterization of a nanocontrast composed of gold nanoparticles (AuNPs), gadopentetic acid (Gd-DTPA), and epidermal growth factor (EGF). Carbodiimide-based chemistry was utilized to modify Gd-DTPA for functionalization with AuNPs. This resulted in the formation of the Au@Gd-EGF nanocontrast. The relaxation rate (1/T1) of the nanocontrast was analyzed using MRI, and cytotoxicity was determined based on cell viability and mitochondrial activity in a human breast adenocarcinoma cell line. Fourier-transform infrared spectroscopy analysis confirmed the effectiveness of carbodiimide in the formation of the Gd-DTPA-cysteamine complex in the presence of bands at 930, 1042, 1232, 1588, and 1716 cm-1. The complexes exhibited good interactions with the AuNPs. However, the signal intensity of the Au@Gd-EGF nanocontrast was lower than that of the commercial contrast agent because the r1/r2 relaxivities of the Gd-DTPA-based contrast agents were lower than those of the gadoversetamide-based molecules. The Au@Gd-EGF nanocontrast agent exhibited good biocompatibility, low cytotoxicity, and high signal intensity in MRI with active targeted delivery, suggesting significant potential for future applications in the early diagnosis of tumors.


Subject(s)
Metal Nanoparticles , Neoplasms , Humans , Contrast Media , Gadolinium DTPA/chemistry , Gold/chemistry , Epidermal Growth Factor , Gadolinium/chemistry , Metal Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Carbodiimides
2.
Polymers (Basel) ; 15(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37177309

ABSTRACT

Eco-friendly chemical methods using FDA-approved Pluronic F127 (PLU) block copolymer have garnered much attention for simultaneously forming and stabilizing Au nanoparticles (AuNPs). Given the remarkable properties of AuNPs for usage in various fields, especially in biomedicine, we performed a systematic study to synthesize AuNP-PLU nanocomposites under optimized conditions using UV irradiation for accelerating the reaction. The use of UV irradiation at 254 nm resulted in several advantages over the control method conducted under ambient light (control). The AuNP-PLU-UV nanocomposite was produced six times faster, lasting 10 min, and exhibited lower size dispersion than the control. A set of experimental techniques was applied to determine the structure and morphology of the produced nanocomposites as affected by the UV irradiation. The MTT assay was conducted to estimate IC50 values of AuNP-PLU-UV in NIH 3T3 mouse embryonic fibroblasts, and the results suggest that the sample is more compatible with cells than control samples. Afterward, in vivo maternal and fetal toxicity assays were performed in rats to evaluate the effect of AuNP-PLU-UV formulation during pregnancy. Under the tested conditions, the treatment was found to be safe for the mother and fetus. As a proof of concept or application, the synthesized Au:PLU were tested as contrast agents with an X-ray computed tomography scan (X-ray CT).

3.
Pharmaceutics ; 15(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36839779

ABSTRACT

Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in ß-cyclodextrin (ßCD), which increased its aqueous solubility and stability. This new ßCD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into ßCD, with an association constant of 80 M-1 and a degree of solubilization of 0.023, where ßCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-ßCD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of -29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 µg/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on ßCD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB.

4.
Micromachines (Basel) ; 14(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838151

ABSTRACT

The use of gold nanoparticles as drug delivery systems has received increasing attention due to their unique properties, such as their high stability and biocompatibility. However, gold nanoparticles have a high affinity for proteins, which can result in their rapid clearance from the body and limited drug loading capabilities. To address these limitations, we coated the gold nanoparticles with silica and PEG, which are known to improve the stability of nanoparticles. The synthesis of the nanoparticles was carried out using a reduction method. The nanoparticles' size, morphology, and drug loading capacity were also studied. The SEM images showed a spherical and homogeneous morphology; they also showed that the coatings increased the average size of the nanoparticles. The results of this study provide insight into the potential of gold nanoparticles coated with silica and PEG as drug delivery systems. We used ibuprofen as a model drug and found that the highest drug load occurred in PEG-coated nanoparticles and then in silica-coated nanoparticles, while the uncoated nanoparticles had a lower drug loading capacity. The coatings were found to significantly improve the stability and drug load properties of the nanoparticles, making them promising candidates for further development as targeted and controlled release drug delivery systems.

5.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36139733

ABSTRACT

BACKGROUND: Gold nanoparticles (AuNPs) can inhibit pivotal pathological changes in experimental asthma, but their effect on steroid-insensitive asthma is unclear. The current study assessed the effectiveness of nebulized AuNPs in a murine model of glucocorticoid (GC)-resistant asthma. METHODS: A/J mice were sensitized and subjected to intranasal instillations of ovalbumin (OVA) once a week for nine weeks. Two weeks after starting allergen stimulations, mice were subjected to Budesonide or AuNP nebulization 1 h before stimuli. Analyses were carried out 24 h after the last provocation. RESULTS: We found that mice challenged with OVA had airway hyperreactivity, eosinophil, and neutrophil infiltrates in the lung, concomitantly with peribronchiolar fibrosis, mucus production, and pro-inflammatory cytokine generation compared to sham-challenged mice. These changes were inhibited in mice treated with AuNPs, but not Budesonide. In the GC-resistant asthmatic mice, oxidative stress was established, marked by a reduction in nuclear factor erythroid 2-related factor 2 (NRF2) levels and catalase activity, accompanied by elevated values of thiobarbituric acid reactive substances (TBARS), phosphoinositide 3-kinases δ (PI3Kδ) expression, as well as a reduction in the nuclear expression of histone deacetylase 2 (HDAC2) in the lung tissue, all of which sensitive to AuNPs but not Budesonide treatment. CONCLUSION: These findings suggest that AuNPs can improve GC-insensitive asthma by preserving HDAC2 and NRF2.

6.
ACS Nano ; 16(9): 14239-14253, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35969505

ABSTRACT

Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impaired the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (AbS) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for AbS recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide-AbS binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Carbon/chemistry , Electrochemical Techniques , Electrodes , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Peptides/chemistry
7.
Biosensors (Basel) ; 12(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35884298

ABSTRACT

Flavivirus detection in humans and mosquito reservoirs has been an important issue since it can cause a variety of illnesses and could represent a health problem in geographical zones where the vector is endemic. In this work, we designed and characterized a biosensor based on gold nanoparticles (AuNPs) and antibody 4G2 for the detection of dengue virus (DENV) in vitro, obtaining different conjugates (with different antibody concentrations). The AuNP-4G2 conjugates at concentrations of 1, 3, and 6 µg/mL presented an increase in the average hydrodynamic diameter compared to the naked AuNPs. Also, as part of the characterization, differences in the UV-Vis absorbance spectrum and electrophoretic migration were observed between the conjugated AuNPs (with BSA or antibody) and naked AuNPs. Additionally, we used this biosensor (AuNP-4G2 conjugate with 3 µg/mL antibody) in the assembly of a competitive lateral flow assay (LFA) for the development of an alternative test to detect the flavivirus envelope protein in isolated DENV samples as a future tool for dengue detection (and other flaviviruses) in the mosquito vector (Aedesaegypti) for the identification of epidemic risk regions. Functionality tests were performed using Dengue virus 2 isolated solution (TCID50/mL = 4.58 × 103) as a positive sample and PBS buffer as a negative control. The results showed that it is possible to detect Dengue virus in vitro with this gold nanoparticle-based lateral flow assay with an estimated detection limit of 5.12 × 102 PFU. We suggest that this biosensor could be used as an additional detection tool by coupling it to different point-of-care tests (POCT) for the easy detection of other flaviviruses.


Subject(s)
Biosensing Techniques , Dengue Virus , Metal Nanoparticles , Animals , Biosensing Techniques/methods , Gold , Humans , Immunoassay/methods
8.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34607201

ABSTRACT

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Antibodies, Immobilized , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Microelectrodes , Polymers , Pyrroles , SARS-CoV-2
9.
Photodiagnosis Photodyn Ther ; 35: 102466, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34343668

ABSTRACT

Metallic nanostructures can improve the production of singlet oxygen (1O2) of a photosensitizer during photodynamic therapy (PDT) . Engineering a high performance nanoparticle is mandatory for an appropriate use of plasmonic nanostructures in PDT. Metal enhanced singlet oxygen generation requires the use of nanoparticles with high scattering efficiency, capable of inducing a significant electric field enhancement and with plasmon peak overlapping the photosensitizer absorption spectrum. Herein, we report the optimization of nanoshells structure (silica core radius and gold shell thickness) to increase the singlet oxygen production by Methylene Blue photosensitizer. A 3D Full-wave field analysis was used to evaluate the plasmonic spectrum, scattering efficiency and localized field intensity of Au nanoshells as a function of their dimensions. The 40/20 core radius/shell thickness optimized gold nanoshell showed 75% scattering efficiency and field enhancement up to 35 times. Metal-enhanced singlet oxygen generation was observed and quantified for Methylene Blue water solution with gold nanoshell particles. Moreover, the influence of the irradiation time and the metallic nanostructures concentration on metal enhanced singlet oxygen generation were also appraised. The experimental results showed that the use of gold nanoshell improved 320% the 1O2 production in a MB solution. The approach used to select a high performance metallic nanoparticle provides insights on engineering plasmonic structures for metal enhanced singlet oxygen generation for PDT.


Subject(s)
Metal Nanoparticles , Nanoshells , Photochemotherapy , Gold , Photochemotherapy/methods , Photosensitizing Agents , Singlet Oxygen
10.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201924

ABSTRACT

Vegetable oils have been used for different applications and, more recently, as an active host medium to obtain nanoparticles for employment in bionanotechnological applications. Nevertheless, oils are very susceptible to oxidation during production, storage, and transportation because of their chemical composition. Consequently, any modification in their production must be accompanied by an analysis of the oxidative stability. In this study, naked and biocompatible gold nanoparticles (AuNPs) were grown on sunflower oil during sputtering deposition using different deposition times. Size and morphology were determined by transmission electron microscopy (TEM) and their concentrations were found by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Rancimat® method was employed to evaluate the AuNPs influence on the oxidative stability of the vegetable oil. Well-dispersed quasi-spherical NPs were produced with a mean diameter in the 2.9-3.7 nm range and they were concentration-dependent on the deposition time. A concentration of about 11 mg/L, 38 mg/L, and 225 mg/L of AuNPs was obtained for a deposition time of 5 min, 15 min, and 30 min, respectively. The results also revealed that AuNPs negatively affected the oxidative stability of the sunflower oil and exponentially reduced the induction period (IP) with the increase in AuNPs content. IP reductions of 63%, 77%, and 81% were determined for the AuNPs containing samples at 11 mg/L, 38 mg/L, and 225 mg/L. For the first time, it is reported that naked AuNPs promote the rapid degradation of vegetable oil and this points out the need for attention relative to the quality of vegetable oils used to host metal nanoparticles.

11.
Talanta ; 226: 122118, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676673

ABSTRACT

Considering the low sensitivity of cytological exams and high costs of the molecular methods, the development of diagnostic tests for effective diagnosis of HPV infections is a priority. In this work, biosensor composed of polypyrrole (PPy) films and gold nanoparticles (AuNPs) was obtained for specific detection of HPV genotypes. The biosensor was developed by using flexible electrodes based on polyethylene terephthalate (PET) strips coated with indium tin oxide (ITO). Polymeric films and AuNPs were obtained by electrosynthesis. Oligonucleotides sequences modified with functional amino groups were designed to recognize HPV gene families strictly. The modified oligonucleotides were chemically immobilized on the nanostructured platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the analysis of the electrode modification and monitoring of molecular hybridization. Electrochemical changes were observed after exposure of the biosensors to plasmid samples and cervical specimens. The biosensor based on the BSH16 probe showed a linear concentration range for target HPV16 gene detection of 100 pg µL-1 to 1 fg µL-1. A limit of detection (LOD) of 0.89 pg µL-1 and limit of quantification (LOQ) of 2.70 pg µL-1 were obtained, with a regression coefficient of 0.98. Screening tests on cervical specimens were performed to evaluate the sensibility and specificity for HPV and its viral family. The expression of a biomarker for tumorigenesis (p53 gene) was also monitored. In this work, a flexible system has been successfully developed for label-free detection of HPV families and p53 gene monitoring with high specificity, selectivity, and sensitivity.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Papillomavirus Infections , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Papillomavirus Infections/diagnosis , Polymers , Pyrroles
12.
Neuroscience ; 457: 41-50, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33465408

ABSTRACT

Gold nanoparticles (GNP) have emerged as an alternative to biomaterials in biomedical applications. Research has clearly demonstrated the relative safety and low toxicity of these molecules. However, the possible neuroprotective effect of GNP on the central nervous system (CNS) and its relationship with neurological and psychiatric disorders remain unclear. Zebrafish is a reliable model to investigate the impact of ethanol (EtOH) consumption on the CNS, including reward signaling such as the cholinergic neurotransmission system. Here, we investigated whether cotreatment or pretreatment with GNP prevented EtOH-induced changes in acetylcholinesterase activity and oxidative stress in the brain of zebrafish. We exposed adult zebrafish to 2.5 mg·L-1 GNP 1 h prior to EtOH (1% v/v) treatment for 1 h, and cotreated adult zebrafish simultaneously with both substances for 1 h. Pretreatment with GNP did not prevent EtOH-induced increase in the acetylcholinesterase activity, whereas cotreatment with 2.5 mg·L-1 GNP and EtOH protected against this increase. The results also suggested similar protective effect on oxidative stress parameters in the zebrafish pretreated with GNP at 2.5 mg·L-1. GNP significantly decreased the levels of thiobarbituric acid reactive species and dihydrodichlorofluorescein levels when cotreated with EtOH. GNP also prevented EtOH-induced increase in superoxide dismutase and catalase activities, suggesting a modulatory role of GNP in enzymatic antioxidant defenses. Our results showed that GNP was able to modulate the disruption of cholinergic and oxidative homeostasis in the brain of zebrafish. These findings indicate for the first time that zebrafish is an interesting perspective to investigate nanoparticles against disorders related to alcohol abuse.


Subject(s)
Metal Nanoparticles , Zebrafish , Acetylcholinesterase/metabolism , Animals , Ethanol/toxicity , Gold , Oxidative Stress , Zebrafish/metabolism
13.
Eur J Pharm Biopharm ; 157: 221-232, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33130338

ABSTRACT

Gold nanoparticle (AuNP)-based systems have been extensively investigated as diagnostic and therapeutic agents due to their tunable properties and easy surface functionalization. Upon cell uptake, AuNPs present an inherent cell impairment potential based on organelle and macromolecules damage, leading to cell death. Such cytotoxicity is concentration-dependent and completely undesirable, especially if unspecific. However, under non-cytotoxic concentrations, internalized AuNPs could potentially weaken cells and act as antitumor agents. Therefore, this study aimed to investigate the antitumor effect of ultrasmall AuNPs (~3 nm) stabilized by the anionic polysaccharide gum arabic (GA-AuNPs). Other than intrinsic cytotoxicity, the focus was downregulation of cancer hallmarks of aggressive tumors, using a highly metastatic model of melanoma. We first demonstrated that GA-AuNPs showed excellent stability under biological environment. Non-cytotoxic concentrations to seven different cell lines, including tumorigenic and non-tumorigenic cells, were determined by standard 2D in vitro assays. Gold concentrations ≤ 2.4 mg L-1 (16.5 nM AuNPs) were non-cytotoxic and therefore chosen for further analyses. Cells exposed to GA-AuNPs were uptaken by melanoma cells through endocytic processes. Next we described remarkable biological properties using non-cytotoxic concentrations of this nanomaterial. Invasion through an extracellular matrix barrier as well as 3D growth capacity (anchorage-independent colony formation and spheroids growth) were negatively affected by 2.4 mg L-1 GA-AuNPs. Additionally, exposed spheroids showed morphological changes, suggesting that GA-AuNPs could penetrate into the preformed tumor and affect its integrity. All together these results demonstrate that side effects, such as cytotoxicity, can be avoided by choosing the right concentration, nevertheless, preserving desirable effects such as modulation of key tumor cell malignancy features.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Gold Compounds/pharmacology , Melanoma, Experimental/drug therapy , Metal Nanoparticles , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Stability , Endocytosis , Gold Compounds/chemistry , Gold Compounds/metabolism , Gold Compounds/toxicity , Gum Arabic/chemistry , Humans , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Nanomedicine , Neoplasm Invasiveness , Neoplasm Metastasis , Particle Size , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
14.
Mikrochim Acta ; 187(11): 594, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33026568

ABSTRACT

The development of a stable nanobioconjugate based on gold nanoparticles (AuNPs) linked to single-strand DNA (ssDNA) is reported for amplification of the electrochemical signal of a Zika virus (ZIKV) genetic material-based bioassay, with high sensitivity. The genosensor was assembled either at a screen-printed gold electrode (SPAuE) or a screen-printed carbon electrode decorated with hierarchical gold nanostructures (SPCE/Au), with Ru3+ as an electrochemical reporter. The genosensor response, interrogated by differential pulse voltammetry (DPV) at the transient current density, was linear from 10 to 600 fM and from 500 fM to 10 pM of the target, with a sensitivity of 2.7 and 2.9 µA cm-2 M-1 and a limit of detection of 0.2 and 33 fM at the SPAuE and SPCE/Au, respectively. The resultant genosensor detected ZIKV genetic material in raw serum samples from infected patients, with no sample pretreatment in a polymerase chain reaction amplification-free assay. The proposed ultrasensitive nanobioconjugate-based system offers a step forward to the diagnosis of the ZIKV, closer to the patient, and holds the potential for signal amplification in biosensing of a myriad of applications.Graphical abstract.


Subject(s)
DNA, Single-Stranded/chemistry , Metal Nanoparticles/chemistry , RNA, Viral/blood , Viral Load/methods , Zika Virus/chemistry , Biosensing Techniques/methods , DNA, Single-Stranded/genetics , Electrochemical Techniques/methods , Gold/chemistry , Humans , Immobilized Nucleic Acids/chemistry , Immobilized Nucleic Acids/genetics , Limit of Detection , Nucleic Acid Hybridization , RNA, Viral/genetics , Ruthenium/chemistry
15.
J Appl Microbiol ; 129(5): 1297-1308, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32463948

ABSTRACT

AIMS: To evaluate the ability of the haloarchaeon Haloferax volcanii to produce Ag and Au nanoparticles (NPs) and to characterize the obtained material in order to find relevant properties for future potential applications. METHODS AND RESULTS: Nanoparticles were produced by incubating H. volcanii cells with the corresponding metal salt. In the presence of precursor salts, cultures evidenced a colour change associated to the formation of metallic nanostructures with plasmonic bands located in the visible range of the spectrum. X-ray fluorescence analysis confirmed the presence of Ag and Au in the NPs which were spherical, with average sizes of 25 nmol l-1 (Ag) and 10 nmol l-1 (Au), as determined by electronic microscopy. Fourier transformed infrared spectroscopy indicated that both types of NPs showed a stable protein capping. Ag NPs evidenced antibacterial activity and Au NPs improved the specificity of polymerase chain reaction reactions. Au and Ag NPs were able to reduce 4-nitrophenol when incubated with NaBH4 . CONCLUSIONS: Haloferax volcanii is able to synthesize metallic NPs with interesting properties for technological applications. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data demonstrate the ability of H. volcanii to synthesize metal NPs and constitutes a solid starting point to deepen the study and explore novel applications.


Subject(s)
Gold/metabolism , Haloferax volcanii/metabolism , Metal Nanoparticles/microbiology , Silver/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Borohydrides/metabolism , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Nitrophenols/metabolism , Particle Size , Silver/chemistry , Silver/pharmacology
16.
Pharmaceutics ; 12(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230975

ABSTRACT

BACKGROUND: Oral mucositis (OM) is a severe inflammation of the oral mucosal cells associated with chemotherapy and/or radiotherapy-induced toxicity, resulting in epithelial ulcers and higher risk of death from sepsis. The aim of the present study was to evaluate the nanoparticle (AuNp) effect on OM induced in hamsters. MATERIALS AND METHODS: 5-fluorouracil (5FU) was used on the first and second day of the experimental model in Golden sirian hamsters, and on the fourth day, mechanical trauma was applied to induce OM. The animals were divided into groups, i.e., polyvinylpyrrolidone (PVP), mechanical trauma (MT), 5FU, and groups treated with gold nanoparticles (AuNps) (62.5, 125, and 250 µg/kg). On the 10th day, animals were euthanized for macroscopic, histopathological, immunohistochemical, western blot, quantitative polymerase chain reaction (qRT-PCR), and AuNp quantification. RESULTS: AuNp (250 µg/kg) reduced TNF-α, IL-1ß, COX-2, NF-κB, TGF-ß, and SMAD 2/3; increased glutathione levels; decreased the expression of Kelch ECH-associated protein 1 (KEAP1); and induced heme oxygenase 1 (HMOX-1) and NAD (P) H quinone oxidoreductase 1 (NQO1) genes. CONCLUSIONS: AuNp (250 µg/kg) prevented 5-FU-induced OM in hamsters and improved the parameters of inflammation and oxidative stress.

17.
J Pharm Biomed Anal ; 185: 113249, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32193043

ABSTRACT

The human papillomavirus (HPV) is one of the main sexually transmitted pathogens that infect the anogenital epithelium and mucous membranes. HPV genotypes can be classified as high and low oncogenic risk, with infection by the former resulting in cervical cancer in approximately 100 % of the cases. In this work, we developed an ultrasensitive electrochemical biosensor for the detection and identification of different HPV genotypes. A nanostructured platform based on a matrix of polyaniline (PANI) containing gold nanoparticles (AuNps) was designed for the chemical immobilization of a DNA probe capable of recognizing different HPV types. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the genosensor. The impedimetric responses indicate that the proposed sensor was able to detect HPV (types 6, 11, 16, 31, 33, 45, and 58) in cervical specimens (cDNA samples). We obtained different profiles of electrochemical responses for the high and low-risk HPV genotypes. By adopting a three-dimensional quantitative analysis of impedance response variables, it was possible to identify the existence of a pattern of association for samples of high oncogenic risk, which may lead to the differential diagnosis of HPV. The biosensor demonstrated an excellent analytical performance for the detection of HPV genotypes with high sensibility and selectivity. The genosensor exhibited a linear range of response in the 1 pg µL-1 to 100 pg µL-1 range. Besides, a limit of detection (LOD) of 2.74 pg µL-1 and 7.43 pg µL-1 was obtained for HPV11 and HPV16, respectively, with regression coefficients of 99.88 % and 99.47 %. Thus, the proposed sensor may serve as a good prognostic indicator for patients infected with papillomavirus.


Subject(s)
Alphapapillomavirus/isolation & purification , Biosensing Techniques/methods , Cervix Uteri/virology , Metal Nanoparticles/chemistry , Papillomavirus Infections/diagnosis , Alphapapillomavirus/genetics , Cervix Uteri/pathology , DNA, Viral/isolation & purification , Diagnosis, Differential , Feasibility Studies , Female , Genotyping Techniques/methods , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Microelectrodes , Microscopy, Atomic Force , Molecular Probes/chemistry , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Prognosis , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology
18.
Eur J Pharm Sci ; 143: 105120, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31669424

ABSTRACT

The repair process consists of molecular and cellular events that can be accelerated by specific therapies. Considering this, the objective of this study was to evaluate the effects of ibuprofen phonophoresis associated with gold nanoparticles in the animal model of traumatic muscle injury. Was used 80 male wistar rats divided into eight groups: Sham; Muscle injury (MI); MI + therapeutic pulsed ultrasound (TPU); MI + Ibuprofen (IBU); MI + GNPs; MI + TPU+ IBU; MI + TPU + GNPs and MI + TPU + IBU + GNPs. The lesion in the gastrocnemius was performed by a single direct trauma impact on the injured press. The animals were treated with pulsed ultrasound and the gel with gold nanoparticles and/or ibuprofen. The treatment was applied daily for 5 days and the first session was 12 h after the muscle injury. The gastrocnemius muscle was surgically removed for analyzes biochemical, molecular and histological. In the analyzes only the MI + TPU + IBU + GNPs group showed a reduction in TNF-a and IL-1 levels, with a concomitant increase in the levels of anti-inflammatory cytokines. In the analysis of oxidative stress, only the MI + TPU + IBU + GNPs group presented a reversal of the condition when compared to the MI group. In the histological analysis, the MI group presented a large cell infiltrate and a centralized nucleus and only the MI + TPU + IBU + GNPs group showed a structural improvement, also in the pain results the MI + TPU + IBU + GNPs showed a significant difference in comparison to the MI group (p<0.01). We believe that the effects of phonophoresis with anti-inflammatory drugs associated with gold nanoparticles may potentiate the reduction of the inflammatory response and regulate the cellular redox state.


Subject(s)
Analgesics/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Gold/administration & dosage , Ibuprofen/administration & dosage , Metal Nanoparticles/administration & dosage , Muscle, Skeletal/injuries , Muscular Diseases/drug therapy , Phonophoresis , Animals , Cytokines/immunology , Disease Models, Animal , Male , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Muscular Diseases/immunology , Muscular Diseases/pathology , Oxidative Stress/drug effects , Rats, Wistar
19.
Nanomedicine (Lond) ; 14(12): 1565-1578, 2019 06.
Article in English | MEDLINE | ID: mdl-31215349

ABSTRACT

Aim: Colon cancer (CC) is the second cause of cancer death worldwide. The use of nanoparticles for drug delivery has been increasing in cancer clinical trials over recent years. Materials & methods: We evaluated cytotoxicity of citrate-capped gold nanoparticles (GNPs) and the role they play on cell-cell adhesion. We also used GNP for delivery of cetuximab into different CC cell lines. Results: CC cells with well-formed tight junctions impair GNP uptake. Noncytotoxic concentration of GNP increases paracellular permeability in Caco-2 cells in a reversible way, concomitantly to tight junctions proteins CLDN1 and ZO-1 redistribution. GNP functionalized with cetuximab increases death of invasive HCT-116 CC cells. Conclusion: GNP can be used for drug delivery and can improve efficiency of CC therapy.


Subject(s)
Cetuximab/pharmacology , Metal Nanoparticles/chemistry , Caco-2 Cells , Cell Survival/drug effects , Fluorescent Antibody Technique , Gold , HCT116 Cells , HT29 Cells , Humans , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Tight Junctions/drug effects , Tight Junctions/metabolism , Tight Junctions/ultrastructure
20.
Nanomaterials (Basel) ; 9(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30625974

ABSTRACT

The development of new nanomaterials to promote wound healing is rising, because of their topical administration and easy functionalization with molecules that can improve and accelerate the process of healing. A nanocomposite of gold nanoparticles (AuNPs) functionalized with calreticulin was synthetized and evaluated. The ability of the nanocomposite to promote proliferation and migration was determined in vitro, and in vivo wound healing was evaluated using a mice model of diabetes established with streptozotocin (STZ). In vitro, the nanocomposite not affect the cell viability and the expression of proliferating cell nuclear antigen (PCNA). Moreover, the nanocomposite promotes the clonogenicity of keratinocytes, endothelial cells, and fibroblasts, and accelerates fibroblast migration. In vivo, mice treated with the nanocomposite presented significantly faster wound healing. The histological evaluation showed re-epithelization and the formation of granular tissue, as well as an increase of collagen deposition. Therefore, these results confirm the utility of AuNPs⁻calreticulin nanocomposites as potential treatment for wound healing of diabetic ulcers.

SELECTION OF CITATIONS
SEARCH DETAIL