Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Environ Geochem Health ; 46(7): 247, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869651

ABSTRACT

The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.


Subject(s)
Environmental Monitoring , Geologic Sediments , Gold , Mining , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Arsenic/analysis , History, 19th Century , Australia , History, 20th Century
2.
Heliyon ; 10(11): e31086, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832266

ABSTRACT

The success of industrial operations depends on the effective identification, appraisal, and mitigation of possible hazards and associated environmental concerns. This report provides a complete review of environmental management techniques at the Sukari Gold Mine (SGM), located in the southeastern desert of Egypt. Extensive environmental measurements were taken to assess air and water quality, identify hazards, and analyze risks on the SGM premises. Air quality and noise intensity levels were measured at 39 places around the mine's working region. The findings found noncompliance with the Egyptian Environmental Law's (EEL4/94) noise exposure limitations, with the Power Generator House having the maximum noise levels at 107 dB. Remedial measures such as personal protective equipment (PPE) and exposure limit reduction strategies are being considered to address elevated noise levels. Measurements of particulate matter (PM10) and noxious gases (e.g., CO, SO2, NO2, HCN, and NH3) were conducted in workplace and ambient environments. Elevated PM10 concentrations were particularly concerning in underground regions, forcing the deployment of water depression techniques and improved PPE measures. While gas emissions from most activities remained under regulatory limits, select zones showed hydrogen cyanide (HCN) levels that exceeded permitted thresholds, necessitating specific control actions. Using hazard index (HI) and risk rating assessments, this study found different risk profiles across SGM's workplaces, focusing on high-risk regions for focused intervention. Additionally, a water assessment near a Tailing Storage Facility (TSF) was conducted to monitor the impact of mining activities on groundwater quality. The study revealed that groundwater in the region belongs to the Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 water classes, with potential degradation attributed to high mineralization processes induced by aquifer materials and seawater intrusion. The findings underscore the importance of ongoing monitoring, control measures, and implementation of programs to ensure environmental sustainability and minimize risks associated with mining activities in the Sukari Gold Mines. This research highlights the imperative of continuous monitoring, proactive control measures, and the implementation of environmental initiatives to ensure the sustainability of mining operations within the Sukari Gold Mines.

3.
Sci Total Environ ; 945: 174034, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885716

ABSTRACT

Gold cyanidation facilities in the Arequipa Region of Peru are challenged by the availability and quality of water for processing in an arid environment. The facilities reuse decant water which recycles residual cyanide but also undesirable constituents. To understand the impact of intensive water recycling on cyanide and metals concentrations, we collected barren water, decant water, and tailings samples from six gold cyanidation facilities with ore capacities of 10-430 tons per day. Processing facilities in Arequipa recycle all effluents, with decant waters making up 58 ± 11 % of process waters. Decant water contained non-target metals: copper (394 ± 161 mg/L), iron (59 ± 34 mg/L), and zinc (74 ± 42 mg/L). In addition, decant water mean free and complexed cyanide concentrations were 534 ± 129 mg/L and 805 ± 297 mg/L, respectively. Complexed cyanide concentrations remained more constant than free cyanide concentrations with 786 ± 299 mg/L for barren water and 805 ± 297 mg/L for decant water. Cyanide mass balances showed between 21 % and 42 % of unaccounted free cyanide from the start of gold cyanidation and discharge to the tailings storage facility (TSF). Free cyanide estimated losses due to volatilization were 0.8 kg and 2.5 kg of hydrogen cyanide per ton of ore processed at barren water pH of 10.1 and 9.7. Together these results indicate two acute hazards: 1) volatilization of free cyanide during processing and 2) loading and retention of cyanides and metals into TSFs. This study elucidates the extent of uncontrolled vapor phase cyanide release during gold processing operation and contaminant concentrations in the tailings storage facilities. The data highlights the need for improvement oversight, accountability, and regulation of gold processing facilities practicing intensive recycling and zero discharge.

4.
Biosensors (Basel) ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785720

ABSTRACT

Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 µM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.


Subject(s)
Biosensing Techniques , Environmental Monitoring , Mercury , Mercury/analysis , Environmental Monitoring/methods , Colorimetry , Water Pollutants, Chemical/analysis , Limit of Detection , Gold/chemistry
5.
Chemosphere ; 361: 142425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797216

ABSTRACT

Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.


Subject(s)
Environmental Monitoring , Gold , Mercury , Mining , Soil Pollutants , Soil , Mercury/analysis , Peru , Soil Pollutants/analysis , Soil/chemistry , Plants/metabolism , Ecosystem , Forests , Rainforest
6.
Toxics ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38787102

ABSTRACT

Artisanal and small-scale gold mining (ASGM) plays a crucial role in global gold production. However, the adoption of poor mining practices or the use of mercury (Hg) in gold recovery processes has generated serious environmental contamination events. The focus of this study is assessing the concentration of Hg in surface waters within the coastal region of Ecuador. The results are used to conduct a human health risk assessment applying deterministic and probabilistic methods, specifically targeting groups vulnerable to exposure in affected mining environments. Between April and June 2022, 54 water samples were collected from rivers and streams adjacent to mining areas to determine Hg levels. In the health risk assessment, exposure routes through water ingestion and dermal contact were considered for both adults and children, following the model structures outlined by the U.S. Environmental Protection Agency. The results indicate elevated Hg concentrations in two of the five provinces studied, El Oro and Esmeraldas, where at least 88% and 75% of the samples, respectively, exceeded the maximum permissible limit (MPL) set by Ecuadorian regulations for the preservation of aquatic life. Furthermore, in El Oro province, 28% of the samples exceeded the MPL established for drinking water quality. The high concentrations of Hg could be related to illegal mining activity that uses Hg for gold recovery. Regarding the human health risk assessment, risk values above the safe exposure limit were estimated. Children were identified as the most vulnerable receptor. Therefore, there is an urgent need to establish effective regulations that guarantee the protection of river users in potentially contaminated areas. Finally, it is important to continue investigating the contamination caused by human practices in the coastal region.

7.
Ecotoxicol Environ Saf ; 277: 116323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653024

ABSTRACT

The Kakamega gold belt's natural geological enrichment and artisanal and small-scale gold mining (ASGM) have resulted in food and environmental pollution, human exposure, and subsequent risks to health. This study aimed to characterise exposure pathways and risks among ASGM communities. Human hair, nails, urine, water, and staple food crops were collected and analysed from 144 ASGM miners and 25 people from the ASGM associated communities. Exposure to PHEs was predominantly via drinking water from mine shafts, springs and shallow-wells (for As>Pb>Cr>Al), with up to 366 µg L-1 arsenic measured in shaft waters consumed by miners. Additional exposure was via consumption of locally grown crops (for As>Ni>Pb>Cr>Cd>Hg>Al) besides inhalation of Hg vapour and dust, and direct dermal contact with Hg. Urinary elemental concentrations for both ASGM workers and wider ASGM communities were in nearly all cases above bioequivalents and reference upper thresholds for As, Cr, Hg, Ni, Pb and Sb, with median concentrations of 12.3, 0.4, 1.6, 5.1, 0.7 and 0.15 µg L-1, respectively. Urinary As concentrations showed a strong positive correlation (0.958) with As in drinking water. This study highlighted the importance of a multidisciplinary approach in integrating environmental, dietary, and public health investigations to better characterise the hazards and risks associated with ASGM and better understand the trade-offs associated with ASGM activities relating to public health and environmental sustainability. Further research is crucial, and study results have been shared with Public Health and Environmental authorities to inform mitigation efforts.


Subject(s)
Biological Monitoring , Mining , Public Health , Humans , Kenya , Environmental Monitoring/methods , Gold , Adult , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Hair/chemistry , Drinking Water/chemistry , Drinking Water/analysis , Male , Arsenic/analysis , Arsenic/urine , Middle Aged , Risk Assessment , Food Contamination/analysis , Female , Nails/chemistry , Environmental Pollutants/analysis , Environmental Pollutants/urine , Young Adult , Occupational Exposure/analysis
8.
J Hazard Mater ; 469: 133948, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493633

ABSTRACT

Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Cadmium , Antimony , Lead , Gold , Sand , Biological Availability , Soil Pollutants/analysis , Australia , Soil , Mining
9.
Ecotoxicology ; 33(4-5): 506-517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430424

ABSTRACT

Mercury contamination from artisanal and small-scale gold mining (ASGM) currently accounts for 37% of the global total, often affecting tropical regions where regulations, if they exist, are often poorly enforced. Ingestion by people and other animals damages the nervous, reproductive, and cognitive systems. Despite the efforts of many organizations and governments to curb mercury releases from ASGM, it is increasing globally. There are many possible interventions, all with significant complexity and cost. Therefore, we recommend taking an established systematic approach to articulate the current situation and construct theories of change (ToC) for different possible interventions for any government or organization trying to solve this problem. Here we present a high-level situation analysis and generic ToC to support a more coordinated approach that explicitly builds upon previous experience to identify organization- and situation-appropriate engagement on this issue. We then illustrate the use of these generic models to construct a specific ToC with a policy-focused entry point. This includes interventions through (1) engagement with the global Minamata Convention on Mercury; (2) support for existing national laws and policies connected to ASGM and mercury contamination; and (3) engagement of indigenous people and local communities with governments to meet the governments' legal obligations. By methodically articulating assumptions about interventions, connections among actions, and desired outcomes, it is possible to create a more effective approach that will encourage more coordination and cooperation among governments and other practitioners to maximize their investments and support broad environmental and socio-political outcomes necessary to address this pernicious problem.


Subject(s)
Gold , Mercury , Mining , Mercury/analysis , Environmental Pollutants/analysis , Humans , Environmental Policy , Environmental Monitoring/methods
10.
Toxics ; 12(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535937

ABSTRACT

Mercury contamination in the Amazon arising from both natural sources and intensive mining activities in the region is a significant public health concern. This metal is used to separate Au from sediments. Accordingly, this study aimed to assess the impact of mining on mercury contamination in the animal and human populations of the Amazon. This overall objective was pursued through a systematic review of the existing literature to assess the impact of Hg and identify gaps in geographic coverage arising from this assessment. Herein, we employed PECO and PRISMA-ScR protocols to select articles published between 2017 and 2023 based on projected points on a map within the biogeographic boundaries of the Amazon. We found that mercury concentrations increase with trophic levels, reaching high values of 3.7 µg/g in the muscles of predatory fish and 34.9 µg/g in human hair. The mean level of mercury in human hair in the whole (Amazon) region exceeds 6 µg/g, surpassing tolerance levels. Although mining regions show high concentrations of Hg, the highest incidence was observed among populations with fish-based diets. It was concluded that continuous research and monitoring of fish in the region are required in order to accurately assess the risk associated with Hg contamination, especially since fish are the main source of protein in this region.

11.
Ecotoxicology ; 33(4-5): 472-483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363482

ABSTRACT

Artisanal and Small-Scale Gold Mining (ASGM) represents a significant source of anthropogenic mercury emissions to the environment, with potentially severe implications for avian biodiversity. In the Madre de Dios department of the southern Peruvian Amazon, ASGM activities have created landscapes marred by deforestation and post-mining water bodies (mining ponds) with notable methylation potential. While data on Hg contamination in terrestrial wildlife remains limited, this study measures Hg exposure in several terrestrial bird species as bioindicators. Total Hg (THg) levels in feathers from birds near water bodies, including mining ponds associated with ASGM areas and oxbow lakes, were analyzed. Our results showed significantly higher Hg concentrations in birds from ASGM sites with mean ± SD of 3.14 ± 7.97 µg/g (range: 0.27 to 72.75 µg/g, n = 312) compared to control sites with a mean of 0.47 ± 0.42 µg/g (range: 0.04 to 1.89 µg/g, n = 52). Factors such as trophic guilds, ASGM presence, and water body area significantly influenced feather Hg concentrations. Notably, piscivorous birds exhibited the highest Hg concentration (31.03 ± 25.25 µg/g, n = 12) exceeding known concentrations that affect reproductive success, where one measurement of Chloroceryle americana (Green kingfisher; 72.7 µg/g) is among the highest ever reported in South America. This research quantifies Hg exposure in avian communities in Amazonian regions affected by ASGM, highlighting potential risks to regional bird populations.


Subject(s)
Birds , Environmental Monitoring , Gold , Mercury , Mining , Animals , Mercury/analysis , Peru , Feathers/chemistry , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Environmental Exposure
12.
Mar Pollut Bull ; 199: 116047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237248

ABSTRACT

Coastal cinnabar mining commenced in 2010 around Luhu on Seram (Ceram) Island, Indonesia. This study investigates the ore characteristics and environmental distribution and bioavailability of mercury in coastal sediments from eight sites adjacent to, and north and south of the mining area. Sediment and ore samples were digested using 1:3 HNO3:HCl for total extractable metal determination and separate samples were extracted with 1.0 HCl for bioavailable metals (Hg, Cu, Zn, Cr, Ni and Pb). Analysis was completed using inductively coupled plasma-mass spectrometry. Ore defined by miners as 'first class ore' was around 50 % cinnabar. Mercury concentrations were extremely elevated in near coastal sediments (up to 2796 mg/kg) with bioavailable concentrations exceeding 450 mg/kg. Marine sediments elevated in mercury extend to the north and south of the coastal mine site and cover in excess of 14 km. Total organic carbon in marine sediments was relatively low (predominately <0.6 %) suggesting mercury methylation will likely be slow, however, inorganic mercury is a known toxicant. Other metals of environmental concern (Cu, Zn, Cr, Ni and Pb) in sediments were not strongly associated with the mining operations, rather were elevated around coastal villages, but not at concentrations that raise immediate concerns.


Subject(s)
Mercury Compounds , Mercury , Metals, Heavy , Water Pollutants, Chemical , Mercury/analysis , Biological Availability , Lead/analysis , Geologic Sediments/chemistry , Environmental Monitoring , Risk Assessment , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
13.
Data Brief ; 52: 110047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38287948

ABSTRACT

Fresh and altered rock samples were collected and analyzed during field and laboratory studies in Tchollire and Environs. This approach aimed at the delineation of hydrothermal alteration minerals which according to the geological and mining settings of Tchollire and Environs, may be associated with gold mineralizations sites. Field investigations were achieved during the dry season to ensure the representativeness and reliability of our samples whose collections were constrained by earlier remote sensing and geophysical studies as expressed in [1]. An optical microscope both in reflected and transmitted light was used for petrographic analyses of thin and polished sections of rock samples. Other rock samples were prepared for spectral measurements which were achieved using an analytical spectral device spectrometer. The data presented here are further interpreted and discussed in [1].

14.
BMC Pregnancy Childbirth ; 23(1): 854, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087268

ABSTRACT

BACKGROUND: Artisanal and small-scale gold mining (ASGM) areas potentially pose increased exposure to arsenic and mercury through community contamination, occupations at gold mines, and/or geophagy when soil is locally sourced. This study examined the effects of geophagy, a deliberate soil eating practice, along with community and occupational exposures in ASGM areas on urinary arsenic and blood mercury levels among pregnant women in the Mining and Health Longitudinal Cohort in northwestern Tanzania. METHODS: Data on maternal arsenic and mercury levels were captured for 1056 pregnant women using an unprovoked morning urine samples and dried blood spots respectively. We used a step-wise generalized linear regression model to retain the most relevant covariates for the model. A generalized linear regression model with identity link function was used to predict the effect of geophagy practices on arsenic and mercury levels separately. The model was adjusted using sociodemographic correlates, including maternal age, education level, whether respondents lived in mining or non-mining area, years of residence, marital status, maternal occupation, individual partner's education, and occupational, and socioeconomic status. RESULTS: In the adjusted regression model, eating soil during pregnancy increased arsenic concentration by almost 23% (ß = 1.229, 95% CI: 1.094, 1.38, p < 0.001) and living in mining areas had a 21.2% (ß = 1.212; 95% CI: 1.039,1.414, p = 0.014) increased risk. Geophagy significantly increased mercury levels by 13.3% (ß = 1.133, 95% CI: 1.022, 1.257, p = 0.018). Living in areas with ASGM activities was associated with a 142% (ß = 2.422, 95% CI: 2.111, 2.776, p < 0.0001) increase in blood mercury. CONCLUSION: Geophagy practices increased urinary arsenic and blood mercury levels in pregnant women, which was especially true for arsenic when living in areas with ASGM activities. Working in mining = increased risk for blood mercury levels. Community-based environmental health policies should address reductions in occupational and community exposures, along with strategic geophagy reduction interventions.


Subject(s)
Arsenic , Mercury , Humans , Female , Pregnancy , Arsenic/analysis , Gold , Tanzania , Pica , Mercury/analysis , Vitamins , Mining , Soil
15.
J Genet Eng Biotechnol ; 21(1): 172, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133697

ABSTRACT

BACKGROUND: The contribution of the processes involved and waste generated during gold mining to the increment of heavy metals concentration in the environment has been well established. While certain heavy metals are required for the normal functioning of an organism, certain heavy metals have been identified for their deleterious effects on the ecosystem and non-physiological roles in organisms. Hence, efforts aimed at reducing their concentration level are crucial. To this end, soil and water samples were collected from Ilesha gold mining, Osun State, Nigeria, and they were subjected to various analyses aimed at evaluating their various physicochemical parameters, heavy metal concentration, heavy metal-resistant bacteria isolation, and other analyses which culminated in the molecular characterization of heavy metal-resistant bacteria. RESULTS: Notably, the results obtained from this study revealed that the concentration of heavy metal in the water samples around the mining site was in the order Co > Zn > Cd > Pb > Hg while that of the soil samples was in the order Co > Cd > Pb > Hg > Zn. A minimum inhibitory concentration test performed on the bacteria isolates from the samples revealed some of the isolates could resist as high as 800 ppm of Co, Cd, and Zn, 400 ppm, and 100 ppm of Pb and Hg respectively. Molecular characterization of the isolates revealed them as Priestia aryabhattai and Enterobacter cloacae. CONCLUSION: Further analysis revealed the presence of heavy metal-resistant genes (HMRGs) including merA, cnrA, and pocC in the isolated Enterobacter cloacae. Ultimately, the bacteria identified in this study are good candidates for bioremediation and merit further investigation in efforts to bioremediate heavy metals in gold mining sites.

16.
Isotopes Environ Health Stud ; 59(4-6): 554-566, 2023.
Article in English | MEDLINE | ID: mdl-37960925

ABSTRACT

This study aimed to evaluate natural radioactivity levels and hazards of radionuclides 232Th, 226Ra and 40K in soil samples taken from 15 locations in the Lega Dembi gold mining, Oromia, Ethiopia, using gamma-ray spectroscopy coupled with an HPGe detector. It was observed that the respective mean specific activities for 226Ra, 232Th and 40K determined in the mining site were 23.87 ± 0.7, 52.5 ± 1.8 and 391.62 ± 11.35 Bq/kg, and 8.89 ± 0.4, 13.83 ± 0.6 and 423.68 ± 9.5 Bq/kg in the living areas. The specific activity of 232Th was above the permissive limit in the mining site, while for 226Ra and 40K were within the limit. The specific activity of 40K in the living area was observed to be above the permissive limit. The calculated value of radiation hazards parameters; radium equivalent activity (Raeq), internal and external hazards indices (Hin) and (Hex), the mean annual effective dose (AED), and gamma representative indices (Iγ) were within permissively limit. The mean absorbed dose rate in the mining site was above the recommended safety limit. The total annual gonadal dose equivalent value was found to be 494.8 ± 8.7 µSv/a in the mining site. This value was also above the permissively.


Subject(s)
Radiation Monitoring , Radioactivity , Radium , Soil Pollutants, Radioactive , Ethiopia , Gold , Potassium Radioisotopes/analysis , Radiation Monitoring/methods , Radioisotopes/analysis , Radium/analysis , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma , Thorium/analysis , Mining
17.
Ecotoxicology ; 32(8): 1096-1123, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37907784

ABSTRACT

Environmental mercury (Hg) contamination of the global tropics outpaces our understanding of its consequences for biodiversity. Knowledge gaps of pollution exposure could obscure conservation threats in the Neotropics: a region that supports over half of the world's species, but faces ongoing land-use change and Hg emission via artisanal and small-scale gold mining (ASGM). Due to their global distribution and sensitivity to pollution, birds provide a valuable opportunity as bioindicators to assess how accelerating Hg emissions impact an ecosystem's ability to support biodiversity, and ultimately, global health. We present the largest database on Neotropical bird Hg concentrations (n = 2316) and establish exposure baselines for 322 bird species spanning nine countries across Central America, South America, and the West Indies. Patterns of avian Hg exposure in the Neotropics broadly align with those in temperate regions: consistent bioaccumulation across functional groups and high spatiotemporal variation. Bird species occupying higher trophic positions and aquatic habitats exhibited elevated Hg concentrations that have been previously associated with reductions in reproductive success. Notably, bird Hg concentrations were over four times higher at sites impacted by ASGM activities and differed by season for certain trophic niches. We developed this synthesis via a collaborative research network, the Tropical Research for Avian Conservation and Ecotoxicology (TRACE) Initiative, which exemplifies inclusive, equitable, and international data-sharing. While our findings signal an urgent need to assess sampling biases, mechanisms, and consequences of Hg exposure to tropical avian communities, the TRACE Initiative provides a meaningful framework to achieve such goals. Ultimately, our collective efforts support and inform local, scientific, and government entities, including Parties of the United Nations Minamata Convention on Mercury, as we continue working together to understand how Hg pollution impacts biodiversity conservation, ecosystem function, and public health in the tropics.


RESúMEN: La contaminación ambiental por mercurio (Hg) en los trópicos supera nuestra comprensión de sus consecuencias para la biodiversidad. Los vacíos de conocimiento que existen sobre la exposición a la contaminación podrían ocultar las amenazas para la conservación en el Neotrópico: una región que alberga a más de la mitad de las especies del mundo, pero que enfrenta una continua intensificación de las emisiones de Hg y del cambio de uso del suelo por el avance de la minería de oro artesanal y de pequeña escala (MAPE). Debido a su distribución global y su sensibilidad a la contaminación, las aves brindan una oportunidad valiosa como bioindicadores para evaluar cómo las emisiones de Hg afectan la capacidad de un ecosistema para sustentar la biodiversidad y, en última instancia, la salud global. Presentamos la más grande base de datos sobre concentraciones de Hg en aves Neotropicales (n = 2,316) para establecer una línea base para los niveles de exposición a Hg en 322 especies de aves de nueve países de América Central, América del Sur, y el Caribe. Encontramos patrones de las concentraciones de Hg en aves de los trópicos que se asemejan a los de las regiones templadas: mostrando una bioacumulación consistente a través de grupos funcionales y una alta variación espaciotemporal. Las especies de aves que ocupan posiciones más altas en la cadena trófica y en hábitats acuáticos registraron concentraciones elevadas de Hg que podrían tener efectos negativos en su éxito reproductivo. Es importante resaltar que las concentraciones de Hg en las aves de los sitios afectados por la MAPE fueron cuatro veces más altas que las de los sitios control y además difirió por temporada para ciertos nichos tróficos. Desarrollamos esta síntesis a través de una red de investigación colaborativa, la Iniciativa de Investigación Tropical para la Conservación y Ecotoxicología Aviar (TRACE), que ejemplifica un intercambio de datos inclusivo, equitativo e internacional. Si bien nuestros hallazgos sugieren una necesidad urgente de evaluar los sesgos en el muestreo, los mecanismos, y las consecuencias de la exposición al Hg en las comunidades de aves tropicales, la Iniciativa TRACE proporciona un marco para abordar estos objetivos. Nuestro esfuerzo colectivo tiene como propósito respaldar y brindar información a las entidades locales, científicas, y gubernamentales, incluyendo las Partes de la Convención de Minamata de las Naciones Unidas sobre el Mercurio, mientras continuamos trabajando juntos para comprender cómo la contaminación por Hg en los trópicos puede afectar la salud pública, el funcionamiento de los ecosistemas, y la conservación de la biodiversidad. Total mercury (THg) concentrations (µg/g) and sample sizes of birds across Central America, South America, and the West Indies from 2007­2023. Point size and color are arranged in order of increasing THg concentration and hexagonal grid cells are colored in terms of increasing sample size.


Subject(s)
Mercury , Animals , Mercury/analysis , Environmental Monitoring , Ecosystem , Environmental Pollution , Gold , Birds
18.
Environ Monit Assess ; 195(11): 1383, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889345

ABSTRACT

Ghana has abundant mineral reserves in many of its regions, and gold mining remains one of the country's main sources of revenue. Given Ghana's current position in the global gold market, this review provides insight into the ASGM sector to give an understanding of the pertinent issues in the sector and its role in the socio-economic development of the country. This review assesses the effects of ASGM operations in economic, social, health, and environmental contexts to raise awareness of issues related to ASGM. It evaluates the measures taken to lessen the consequences of ASGM and maintain the sector's long-term viability. This review considers the foremost issues, including continued Hg use in ASGM, recent use of cyanide in ASGM, pollution of water bodies, and toxic metal contamination. It takes into account sustainable measures and remedial techniques that Ghana has implemented to alleviate the negative effects and support best mining practices. The primary factors influencing people to participate in ASGM are the need for quick sources of income, the scarcity of jobs in rural areas, the economic hardship, the need to supplement earnings from other activities like trading, and the comparatively meager profits from agricultural activities. Findings indicated that to gain more traction in addressing the challenges in the ASGM sector, the involvement of the community and direct stakeholders is essential to promoting responsible mining and environmentally sustainable practices. This review will increase awareness and pressure on decision-makers, researchers, and ASGM communities about the relevance of environmental conservation and sustainability.


Subject(s)
Gold , Mining , Humans , Environmental Monitoring , Ghana , Income , Mercury/analysis
19.
Environ Geochem Health ; 45(12): 9875-9889, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878226

ABSTRACT

The concentration and bioaccessibility of potentially toxic metals, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, were determined in surface soil samples from a mining community (Kenyasi) and a non-mining community (Sunyani) in Ghana, to investigate the contribution of mining activities to the environmental burden of potentially toxic metals. The study found significant differences in metal concentrations (p < 0.05) in As, Cd, Cu, Mn, Ni, and Zn, but no significant difference (p > 0.05) in Pb and Cr between the two communities. The study found a moderate correlation between pH and metal concentrations in the mining community and a moderate positive correlation with As, Cd, Cr, Cu, Ni, and Zn in the non-mining community. The distribution pattern revealed elevated levels of toxic metals in the southeastern corridor of the mining community, which is close to a gold mine. Most heavy metals were concentrated in the commercial community's southern zone, with more residents and private elementary schools. Metal bioaccessibility was variable, and except for Cu and Zn, the mean bioaccessibility was less than 50% for a given metal. Contamination factor, geoaccumulation index, and soil enrichment factor suggested very high contamination of Cd, and a considerable to moderate contamination of As, Ni, Zn, and Cu at both the mining and non-mining communities. The above observations and the pollution and risk indices employed in this study confirmed that the mining community was more polluted (PLI = 2.145) than the non-mining community (PLI = 1.372). The total metal hazard (HI) exceeded thresholds by three and four times at non-mining and mining sites. Regular monitoring is necessary, especially in the mining community, to prevent soil metal accumulation.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil , Environmental Monitoring , Ghana , Cadmium , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , China
20.
Article in English | MEDLINE | ID: mdl-37681780

ABSTRACT

Gorontalo is reputed to be one of the best-quality gold producers in the Indonesian archipelago. Gold production has been largely achieved through the activities of artisanal small-scale gold mining (ASGM), which as part of its extraction process, primarily uses mercury-a substance known to cause negative impacts on health and the environment, leading also to numerous socio-economic issues. This research aims (1) to investigate the extent of rural knowledge regarding mercury and to determine whether a video that explains mercury and the problems that occur as a result of ASGM can significantly transform rural populations' knowledge; (2) to inspect different factors separating the SR group (those who live in the same regency as the ASGM area) from the NR group (those who live in the neighboring regency/city of the ASGM area) and to find out whether said factors are statistically significant. The results show that the test subjects' knowledge of mercury had increased after watching the video, and that their willingness to oppose ASGM activities is one of the significant factors within the two groups. Moreover, this paper briefly describes the follow-up activities of the SRIREP project (Co-creation of Sustainable Regional Innovation for Reducing Risk of High-impact Environmental Pollution) in encouraging rural communities to explore sustainable livelihoods as an alternative to ASGM.


Subject(s)
Mercury , Rural Population , Humans , Indonesia , Environmental Pollution , Gold
SELECTION OF CITATIONS
SEARCH DETAIL
...